
A Perfect Sampler for Hypergraph Independent Sets

06.07.2022Guoliang Qiu, Yanheng Wang, Chihao Zhang

A Perfect Sampler for Hypergraph Independent Sets
vertex set [n]

1 2 3

4 5

A Perfect Sampler for Hypergraph Independent Sets
vertex set [n] σ : [n] → {•, ◦} such that

no hyperedge is fully-•
1 2 3

4 5

A Perfect Sampler for Hypergraph Independent Sets
outputs an independent
set uniformly at random

vertex set [n] σ : [n] → {•, ◦} such that
no hyperedge is fully-•

1 2 3

4 5

Motivation and Results

[HSZ19]

[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

• d ≤ c · 2k/2 : poly-time approximate sampler via Glauber dynamics

Motivation and Results

[HSZ19]

[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

Questions:

• perfect (instead of approximate) samples?

• simpler analysis?

• non-uniform, non-regular?

• d ≤ c · 2k/2 : poly-time approximate sampler via Glauber dynamics

Motivation and Results

[HSZ19]

[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

Questions:

• perfect (instead of approximate) samples?

• simpler analysis?

• non-uniform, non-regular?

• d ≤ c · 2k/2 : poly-time approximate sampler via Glauber dynamics

Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected
running time is polynomial, assuming

• either a LLL condition for general hypergraphs;

• or d ≤ c · 2k/2 for k-uniform d-regular hypergraphs.

Motivation and Results

[HSZ19]

[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

Questions:

• perfect (instead of approximate) samples?

• simpler analysis?

• non-uniform, non-regular?

“coupling from the past”

• d ≤ c · 2k/2 : poly-time approximate sampler via Glauber dynamics

[PW96]

Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected
running time is polynomial, assuming

• either a LLL condition for general hypergraphs;

• or d ≤ c · 2k/2 for k-uniform d-regular hypergraphs.

Motivation and Results

[HSZ19]

[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

Questions:

• perfect (instead of approximate) samples?

• simpler analysis?

• non-uniform, non-regular?

“coupling from the past”

systematic scan + witness structure for analysis

• d ≤ c · 2k/2 : poly-time approximate sampler via Glauber dynamics

[PW96]

[HSW21]

Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected
running time is polynomial, assuming

• either a LLL condition for general hypergraphs;

• or d ≤ c · 2k/2 for k-uniform d-regular hypergraphs.

The Systematic Scan

time t

Update schedule & rule:

vt =

The Systematic Scan

time t

Update schedule & rule:

1vt =

The Systematic Scan

time t

Update schedule & rule:

1 2vt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · nvt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · n 1vt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · n 1 2vt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · nvt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

The Systematic Scan

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

The Systematic Scan Coupling from the Past

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

For each independent set σ, denote by (Xσ
t)

the Markov chain starting from σ.

[PW96]

The Systematic Scan Coupling from the Past

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

For each independent set σ, denote by (Xσ
t)

the Markov chain starting from σ.

Grand coupling: Run these chains in par-
allel, sharing the same random coin Rt.

[PW96]

The Systematic Scan Coupling from the Past

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

For each independent set σ, denote by (Xσ
t)

the Markov chain starting from σ.

Grand coupling: Run these chains in par-
allel, sharing the same random coin Rt.

Coalescence by time T :
Xσ
T = Xπ

T for all σ, π ∈ Ω.

[PW96]

The Systematic Scan Coupling from the Past

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

For each independent set σ, denote by (Xσ
t)

the Markov chain starting from σ.

Grand coupling: Run these chains in par-
allel, sharing the same random coin Rt.

Coalescence by time T :
Xσ
T = Xπ

T for all σ, π ∈ Ω.

CFTP transformation: If we can design
a routine that detects coalescence, then we
can turn it into a perfect sampler!

[PW96]

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)I

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)

What happened at T ′, the last time we updated v?

I

I

almost full in Xσ
T ′

v

but not so in Xπ
T ′

v

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)

What happened at T ′, the last time we updated v?

RT ′ = • and ∃C ′ 3 v :

I

I

I

almost full in Xσ
T ′

v

but not so in Xπ
T ′

v

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)

What happened at T ′, the last time we updated v?

RT ′ = • and ∃C ′ 3 v :

v′ v′

I

I

I

almost full in Xσ
T ′

v

but not so in Xπ
T ′

v

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)

What happened at T ′, the last time we updated v?

RT ′ = • and ∃C ′ 3 v :

v′ v′

I

I

I

∃v′ : Xσ
T ′(v

′) 6= Xπ
T ′(v

′)

What happened at T ′′, the last time we updated v′?

RT ′′ = • and ∃C ′′ 3 v′ : almost full in Xσ
T ′′ but not so in Xπ

T ′′

I

I

I

almost full in Xσ
T ′

v

but not so in Xπ
T ′

v

Idea of Coalescence Detection

If not coalesce by time T (that is ∃σ, π : Xσ
T 6= Xπ

T), then ...

∃v : Xσ
T (v) 6= Xπ

T (v)

What happened at T ′, the last time we updated v?

RT ′ = • and ∃C ′ 3 v :

...

v′ v′

I

I

I

∃v′ : Xσ
T ′(v

′) 6= Xπ
T ′(v

′)

What happened at T ′′, the last time we updated v′?

RT ′′ = • and ∃C ′′ 3 v′ : almost full in Xσ
T ′′ but not so in Xπ

T ′′

I

I

I

Nodes.

Witness Directed Graph Up to T

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

:= {τ ∈ (t− n, t] : vτ ∈ C}

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

:= {τ ∈ (t− n, t] : vτ ∈ C}

{2, 4, 5}
eC,5 =

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

{4, 5, 6}
eC,6 =

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

Arcs. eC′,t′ ← eC,t iff t′ < t and (eC′,t′ ∩ eC,t) 6= ∅

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

Arcs. eC′,t′ ← eC,t iff t′ < t and (eC′,t′ ∩ eC,t) 6= ∅

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

Arcs. eC′,t′ ← eC,t iff t′ < t and (eC′,t′ ∩ eC,t) 6= ∅

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

Lemma.
If no coalescence occur by time T , then there exists an induced path P = (e` ← · · · ← e1)

of length ` ≥ T/n in the witness graph such that Rt = • for all t ∈
⋃`
i=1 ei.

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

Arcs. eC′,t′ ← eC,t iff t′ < t and (eC′,t′ ∩ eC,t) 6= ∅

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

Lemma.
If no coalescence occur by time T , then there exists an induced path P = (e` ← · · · ← e1)

of length ` ≥ T/n in the witness graph such that Rt = • for all t ∈
⋃`
i=1 ei.

bad event BP ; P(BP) is very low!

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Nodes.

Witness Directed Graph Up to T

Arcs. eC′,t′ ← eC,t iff t′ < t and (eC′,t′ ∩ eC,t) 6= ∅

eC,t

eD,t

{1} {1, 2} {1, 2, 4}

{2} {2, 3}

{2, 4, 5} {4, 5, 6}

{3, 6} {6, 7}

Lemma.
If no coalescence occur by time T , then there exists an induced path P = (e` ← · · · ← e1)

of length ` ≥ T/n in the witness graph such that Rt = • for all t ∈
⋃`
i=1 ei.

bad event BP ; P(BP) is very low!

union bound

:= {τ ∈ (t− n, t] : vτ ∈ C}

1 2

vt

3t 4 5 6 7 · · ·
1 2 3 4 1 2 3 · · ·

C := {1, 2, 4}

D := {2, 3}

n = 4

foreach hyperedge C:

foreach time t = 1, . . . , T :

if vt ∈ C then create a node eC,t

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

C` C`−1 C4 C3 C2 C1

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

C` C`−1 C4 C3 C2 C1

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

P(BP) ≤
∏`/2
i=1 2−|C2i−1|

C` C`−1 C4 C3 C2 C1

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

P(BP) ≤
∏`/2
i=1 2−|C2i−1|

C` C`−1 C4 C3 C2 C1

Assumption: Constant ε ∈ (0, 1) and function C 7→ f(C) ∈ (0, 1) satisfy

2−|C| ≤ (1− ε)f(C)

2|C|
∏
C′∼C

(1− f(C ′)), ∀C.

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

P(BP) ≤
∏`/2
i=1 2−|C2i−1|

≤ (1− ε)`/2
∏`/2
i=1

f(C2i−1)
2|C2i−1|

∏
C′∼C2i−1

(1− f(C ′))

C` C`−1 C4 C3 C2 C1

Assumption: Constant ε ∈ (0, 1) and function C 7→ f(C) ∈ (0, 1) satisfy

2−|C| ≤ (1− ε)f(C)

2|C|
∏
C′∼C

(1− f(C ′)), ∀C.

reminds us of Galton-Watson branching process

Analysis

Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

P(BP) ≤
∏`/2
i=1 2−|C2i−1|

≤ (1− ε)`/2
∏`/2
i=1

f(C2i−1)
2|C2i−1|

∏
C′∼C2i−1

(1− f(C ′))

C` C`−1 C4 C3 C2 C1

Assumption: Constant ε ∈ (0, 1) and function C 7→ f(C) ∈ (0, 1) satisfy

2−|C| ≤ (1− ε)f(C)

2|C|
∏
C′∼C

(1− f(C ′)), ∀C.

reminds us of Galton-Watson branching process

Sketch: Map path P to a labelled tree TP . Then the product corresponds to the proba-
bility that TP is generated by a suitable G-W process. Hence

∑
P product(P) ≤ 1.

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

∃P = (e` ← · · · ← e1) : BP {

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

∃P = (e` ← · · · ← e1) : BP
∃Q = (e`−1 ← · · · ← e1) : BQ{(i)

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

∃P = (e` ← · · · ← e1) : BP
∃Q = (e`−1 ← · · · ← e1) : BQ
∃e` validly extends Q{(i)

(ii)

When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

∃P = (e` ← · · · ← e1) : BP
∃Q = (e`−1 ← · · · ← e1) : BQ
∃e` validly extends Q{

Key: If #extensions is large, then the “intersection” between e` and Q is small

(i)

(ii)

thus P[(ii) | (i)] is small

