A Perfect Sampler for Hypergraph Independent Sets

Guoliang Qiu, Yanheng Wang, Chihao Zhang 06.07.2022

A Perfect Sampler for Hypergraph Independent Sets

vertex set [n]

A Perfect Sampler for Hypergraph Independent Sets

vertex set [n] o : [n] — {e,0} such that

hyperedge is fully-e
QYO B
\
59

A Perfect Sampler for Hypergraph Independent Sets

vertex set [n] o : [n] — {e,0} such that

hyperedge is fully-e
QYO B
\
59

Motivation and Results

For k-uniform d-regular hypergraphs,

o d>5-2F/2: no poly-time approximate sampler assuming RP # NP

o d < c-2%/2: poly-time approximate sampler via Glauber dynamics

Motivation and Results

For k-uniform d-regular hypergraphs,

o d>5-2F/2: no poly-time approximate sampler assuming RP # NP

o d < c-2%/2: poly-time approximate sampler via Glauber dynamics

Questions:
e non-uniform, non-regular?
e perfect (instead of approximate) samples?
e simpler analysis?

Motivation and Results

For k-uniform d-regular hypergraphs,
o d>5-2F/2: no poly-time approximate sampler assuming RP # NP

o d < c-2%/2: poly-time approximate sampler via Glauber dynamics

Questions:
e non-uniform, non-regular?
e perfect (instead of approximate) samples?
e simpler analysis?

Result: A sampler that outputs a perfectly uniform independent set a.s.

running time is polynomial, assuming

e cither a LLL condition for general hypergraphs;
e or d < c-2F/2 for k-uniform d-regular hypergraphs.

Its expected

Motivation and Results

For k-uniform d-regular hypergraphs,
o d>5-2F/2: no poly-time approximate sampler assuming RP # NP

o d < c-2%/2: poly-time approximate sampler via Glauber dynamics

Questions:
e non-uniform, non-regular?
e perfect (instead of approximate) samples?
e simpler analysis?

Result: A sampler that outputs a perfectly uniform independent set a.s.

running time is polynomial, assuming

e cither a LLL condition for general hypergraphs;
e or d < c-2F/2 for k-uniform d-regular hypergraphs.

Its expected

Motivation and Results

For k-uniform d-regular hypergraphs,
o d>5-2F/2: no poly-time approximate sampler assuming RP # NP

o d < c-2%/2: poly-time approximate sampler via Glauber dynamics

Questions:
e non-uniform, non-regular?
e perfect (instead of approximate) samples?
e simpler analysis?

Result: A sampler that outputs a perfectly uniform independent set a.s.

running time is polynomial, assuming

e cither a LLL condition for general hypergraphs;
e or d < c-2F/2 for k-uniform d-regular hypergraphs.

Its expected

The Systematic Scan

Update schedule & rule:

> i
vy — time ¢

The Systematic Scan

Update schedule & rule:

> i
v = 1 time ¢

The Systematic Scan

Update schedule & rule:

> i
,Ut:l 2 time ¢

The Systematic Scan

Update schedule & rule:

,Ut:l 2 ... n >t1met

The Systematic Scan

Update schedule & rule:

,Ut:l 2 ... n 1 >t1met

The Systematic Scan

Update schedule & rule:

w=12 - n 12 > time ¢

The Systematic Scan

Update schedule & rule:

The Systematic Scan

Update schedule & rule:

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

The Systematic Scan

Update schedule & rule:

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

The Systematic Scan Coupling from the Past

Update schedule & rule: For each independent set o, denote by (X})
- the Markov chain starting from o.

=12 ---nll 2 - n time ¢

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

The Systematic Scan Coupling from the Past

Update schedule & rule: For each independent set o, denote by (X))
- the Markov chain starting from o.
=1 2 - n|l 2 .. p| = umet
Grand coupling: Run these chains in par-
At time ¢, allel, sharing the same random coin R;.

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

The Systematic Scan

Update schedule & rule:

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

» time ¢

Coupling from the Past

For each independent set o, denote by (X))
the Markov chain starting from o.

Grand coupling: Run these chains in par-
allel, sharing the same random coin R;.

Coalescence by time 7"
X$ = XT for all o,m € ().

The Systematic Scan

Update schedule & rule:

ve=12 -~ n1 2 -+ n

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

» time ¢

Coupling from the Past

For each independent set o, denote by (X))
the Markov chain starting from o.

Grand coupling: Run these chains in par-
allel, sharing the same random coin R;.

Coalescence by time 7"
X$ = XT for all o,m € ().

CFTP transformation: If we can design
a routine that detects coalescence, then we
can turn it into a perfect sampler!

ldea of Coalescence Detection

If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

Su: X (0) # X5(v)

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

J0: X9(0) £ XE(0)
What happened at T”, the last time we updated v?

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

J0: X9(0) £ XE(0)
What happened at T”, the last time we updated v?

Rpr = e and 3C" 3 v :almost full in X%, but not so in X7,

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

J0: X9(0) £ XE(0)
What happened at T”, the last time we updated v?

Rpr = e and 3C" 3 v :almost full in X%, but not so in X7,

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

J0: X9(0) £ XE(0)
What happened at T”, the last time we updated v?

Rpr = e and 3C" 3 v :almost full in X%, but not so in X7,

' XG, (V') # XT (V)
What happened at T", the last time we updated v’?

Rpv = e and 3C" 5 v’ : almost full in X9,, but not so in X7,

ldea of Coalescence Detection
If not coalesce by time T (that is Jo, 7 : X7 # X7), then ...

J0: X9(0) £ XE(0)
What happened at T”, the last time we updated v?

Rpr = e and 3C" 3 v :almost full in X%, but not so in X7,

' XG, (V') # XT (V)
What happened at T", the last time we updated v’?

Rpv = e and 3C" 5 v’ : almost full in X9,, but not so in X7,

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v¢ € C then create a node ec

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

t i1 2 3 4 i 5 6 7
n=4 w - 1 2 3 4 1 2 3
C = {1,2,4} o P {12} (1,2,4) {2,4,5) {45.6)

D :={2,3} ept 2y {2,3) (3,6} {6,7)

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Arcs. ecrv < ecy iff t' < tand (ecry Necy) # 0

t i1 2 3 4 i 5 6 7
n=4 w - 1 2 3 4 1 2 3
C = {1,2,4} o P {12} (1,2,4) {2,4,5) {45.6)

D :={2,3} ept 2y {2,3) (3,6} {6,7)

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}

Arcs. ecrv < ecy iff t' < tand (ecry Necy) # 0

t i1 2 3 4 i 5 6 7
n=4 w - 1 2 3 4 1 2 3
C = {1,2,4} cow | 1< {1,2) (1,2, 47502, 4,5)14,5,6)

D :={2,3} ept (2} < {2,3) (3,6} <—{6,7)

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}
Arcs. ecrv < ecy iff t' < tand (ecry Necy) # 0

Lemma.
If no coalescence occur by time 7', then there exists an induced path P = (ey < -+ < e1)

of length ¢ > T'/n in the witness graph such that R, = e for all t € Ule €;-

t i1 2 3 4 i 5 6 T
n=4 w 1 2 3 4 1 2 3 -
C = {1,2,4} cow | 1< {1,2) (1,2, 47502, 4,5)14,5,6)

D :={2,3} ept (2} < {2,3) (3,6} <—{6,7)

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}
Arcs. ecrv < ecy iff t' < tand (ecry Necy) # 0

Lemma.
If no coalescence occur by time 7', then there exists an induced path P = (ey < -+ < e1)

of length ¢ > T'/n in the witness graph such that R, = e for all t € Ule €;-

t i1 2 3 4 i 5 6 T
n=4 w 1 2 3 4 1 2 3 -
C = {1,2,4} cow | 1< {1,2) (1,2, 47502, 4,5)14,5,6)

D :={2,3} ept (2} < {2,3) (3,6} <—{6,7)

Witness Directed Graph Up to T

Nodes. foreach hyperedge C"
foreach time t =1,...,T:
if v € C then create a node ecy :={7 € (t —n,t| : v, € C}
Arcs. ecrv < ecy iff t' < tand (ecry Necy) # 0

Lemma.
If no coalescence occur by time 7', then there exists an induced path P = (ey < -+ < e1)

of length ¢ > T'/n in the witness graph such that R, = e for all t € Ule €;-

t i1 2 3 4 i 5 6 T
n=4 w 1 2 3 4 1 2 3 -
C = {1,2,4} cow | 1< {1,2) (1,2, 47502, 4,5)14,5,6)

D :={2,3} ept (2} < {2,3) (3,6} <—{6,7)

Analysis

Given induced path P = (ep ¢~ €ep_1 < -+ 4= €4 < €3 < €3 < €71)

Analysis

Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)

Analysis

Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)

P(Bp) < [[;5 27/C1]

Analysis

Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)

P(Bp) < [[;5 27/C1]

Assumption: Constant € € (0, 1) and function C' — f(C) € (0, 1) satisfy

f(C)
2|C]

271 < (1-¢) [[a—rcy), ve

c’'~C

Analysis
Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)
P(Br) < [T5 2710

Assumption: Constant € € (0, 1) and function C' — f(C) € (0, 1) satisfy

f(C)
2|C]

271 < (1-¢) [[a—rcy), ve

c’'~C

| £/2 f(Coi—1
<(1- 5)£/2 Hzil éfCQi_lf HC/NCQi_l (1—f(C))

Analysis
Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)
P(Br) < [T5 2710

Assumption: Constant € € (0, 1) and function C' — f(C) € (0, 1) satisfy

f(C)
2|C]

271 < (1-¢) [[a—rcy), ve

c’'~C

| £/2 f(Coi—1
<(1- 5)£/2 Hzil QTCQi_I? HC/NCQZ-_l (1—f(C))

Sketch: Map path P to a labelled tree 7p. Then the product corresponds to the proba-
bility that 7p is generated by a suitable G-W process. Hence), product(P) < 1.

When Hypergraph Is k-Uniform and d-Regular

ok /2

Take f(C) :=1/(kd)” for all C, then the constraint becomes d < ¢ - %573

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ -

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ -

Refinement: inductive path-extension argument.

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ -

Refinement: inductive path-extension argument.

AP =(eg -+ <e€1): Bp {

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ -

Refinement: inductive path-extension argument.

dP = (eg < -+ <+e1): Bp {(1) 3Q = (ee-1 ¢+~ «e1): Bg

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ -

Refinement: inductive path-extension argument.

EIP:(€€<_"'561>:BP {(1) HQ:(eg_l%-..%el):BQ
(ii) de, validly extends @

When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ 2.

Refinement: inductive path-extension argument.

EIP:(€€<_"'561>:BP {(1) HQ:(eg_l%-..%el):BQ
(ii) de, validly extends @

Key: If #extensions is large, then the “intersection” between e, and () is small
thus P[(ii) | (i)] is small

