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The Systematic Scan

Update schedule & rule:

ve=12 -~ n1 2 -+ n

At time ¢,

e Flip a fair coin R; € {e,0};
e Colour v; by R; if allowed.

Convergence:
Group every n steps into one

» time ¢

Coupling from the Past

For each independent set o, denote by (X))
the Markov chain starting from o.

Grand coupling: Run these chains in par-
allel, sharing the same random coin R;.

Coalescence by time 7"
X$ = XT for all o,m € ().

CFTP transformation: If we can design
a routine that detects coalescence, then we
can turn it into a perfect sampler!
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Analysis
Given induced path P = (ep <~ €p_1 < -+ < €4 < €3 < €3 < €1)
P(Br) < [T5 2710

Assumption: Constant € € (0, 1) and function C' — f(C) € (0, 1) satisfy

f(C)
2|C]

271 < (1-¢) [[ a—rcy), ve

c’'~C

| £/2 f(Coi—1
<(1- 5)£/2 Hzil QTCQi_I? HC/NCQZ-_l (1—f(C))

Sketch: Map path P to a labelled tree 7p. Then the product corresponds to the proba-
bility that 7p is generated by a suitable G-W process. Hence ), product(P) < 1.
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When Hypergraph Is k-Uniform and d-Regular

Take f(C) :=1/(kd)? for all C, then the constraint becomes d < ¢ 2.

Refinement: inductive path-extension argument.

EIP:(€€<_"'561>:BP {(1) HQ:(eg_l%-..%el):BQ
(ii) de, validly extends @

Key: If #extensions is large, then the “intersection” between e, and () is small
thus P[(ii) | (i)] is small



