Guoliang Qiu, Yanheng Wang, Chihao Zhang 06.07.2022

vertex set [n]

 $\sigma: [n] \to \{\bullet, \circ\}$ such that no hyperedge is fully- \bullet

outputs an independent set uniformly at random vertex set [n]

 $\sigma: [n] \to \{\bullet, \circ\}$ such that no hyperedge is fully- \bullet

For k-uniform d-regular hypergraphs,

- $d > 5 \cdot 2^{k/2}$: no poly-time approximate sampler assuming $RP \neq NP$
- $d \le c \cdot 2^{k/2}$: poly-time approximate sampler via Glauber dynamics

For k-uniform d-regular hypergraphs,

- $d > 5 \cdot 2^{k/2}$: no poly-time approximate sampler assuming $RP \neq NP$
- $d \le c \cdot 2^{k/2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples?
- simpler analysis?

For k-uniform d-regular hypergraphs,

- $d > 5 \cdot 2^{k/2}$: no poly-time approximate sampler assuming $RP \neq NP$
- $d \le c \cdot 2^{k/2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples?
- simpler analysis?

Result: A sampler that outputs a *perfectly* uniform independent set a.s. Its expected running time is polynomial, assuming

- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k/2}$ for k-uniform d-regular hypergraphs.

For k-uniform d-regular hypergraphs,

- $d > 5 \cdot 2^{k/2}$: no poly-time approximate sampler assuming $RP \neq NP$
- $d \le c \cdot 2^{k/2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples? ——•"coupling from the past" [PW96]
- simpler analysis?

Result: A sampler that outputs a *perfectly* uniform independent set a.s. Its expected running time is polynomial, assuming

- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k/2}$ for k-uniform d-regular hypergraphs.

For k-uniform d-regular hypergraphs,

- $d > 5 \cdot 2^{k/2}$: no poly-time approximate sampler assuming $RP \neq NP$
- $d \le c \cdot 2^{k/2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples? —> "coupling from the past" [PW96]
- simpler analysis? \longrightarrow systematic scan + witness structure for analysis [HSW21]

Result: A sampler that outputs a *perfectly* uniform independent set a.s. Its expected running time is polynomial, assuming

- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k/2}$ for k-uniform d-regular hypergraphs.

Update schedule & rule:

 $v_t = 1 \quad 2 \quad \cdots \quad n$ \blacktriangleright time t

Update schedule & rule:

 $v_t = 1 \quad 2 \quad \cdots \quad n \quad 1$ time t

Update schedule & rule:

 $v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \qquad \qquad \blacktriangleright \text{ time } t$

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright$$
 time t

Update schedule & rule:

 $v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Update schedule & rule:

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Convergence: Group every n steps into one block.

Update schedule & rule:

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past [PW96]

For each independent set σ , denote by (X_t^{σ}) the Markov chain starting from σ .

Update schedule & rule:

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past [PW96]

For each independent set σ , denote by (X_t^{σ}) the Markov chain starting from σ .

Grand coupling: Run these chains in parallel, sharing the same random coin R_t .

Update schedule & rule:

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Convergence: Group every n steps into one block.

Coupling from the Past [PW96]

For each independent set σ , denote by (X_t^{σ}) the Markov chain starting from σ .

Grand coupling: Run these chains in parallel, sharing the same random coin R_t .

Coalescence by time T: $X_T^{\sigma} = X_T^{\pi}$ for all $\sigma, \pi \in \Omega$.

Update schedule & rule:

$$v_t = 1 \quad 2 \quad \cdots \quad n \quad 1 \quad 2 \quad \cdots \quad n \quad \blacktriangleright \quad \text{time } t$$

At time t,

- Flip a fair coin $R_t \in \{\bullet, \circ\};$
- Colour v_t by R_t if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past [PW96]

For each independent set σ , denote by (X_t^{σ}) the Markov chain starting from σ .

Grand coupling: Run these chains in parallel, sharing the same random coin R_t .

Coalescence by time T: $X_T^{\sigma} = X_T^{\pi}$ for all $\sigma, \pi \in \Omega$.

CFTP transformation: If we can design a routine that detects coalescence, then we can turn it into a perfect sampler!

If not coalesce by time T (that is $\exists \sigma, \pi : X_T^{\sigma} \neq X_T^{\pi}$), then ...

 $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$

- $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$
- ▶ What happened at T', the last time we updated v?

- $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$
- \blacktriangleright What happened at T', the last time we updated v?

- $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$
- \blacktriangleright What happened at T', the last time we updated v?
- $R_{T'} = \bullet \text{ and } \exists C' \ni v \text{ :almost full in } X_{T'}^{\sigma} \text{ but not so in } X_{T'}^{\pi}$

If not coalesce by time T (that is $\exists \sigma, \pi : X_T^{\sigma} \neq X_T^{\pi}$), then ...

- $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$
- \blacktriangleright What happened at T', the last time we updated v?

- $\blacktriangleright \exists v': X^{\sigma}_{T'}(v') \neq X^{\pi}_{T'}(v')$
- ▶ What happened at T'', the last time we updated v'?
- ► $R_{T''} = \bullet$ and $\exists C'' \ni v'$: almost full in $X_{T''}^{\sigma}$ but not so in $X_{T''}^{\pi}$

If not coalesce by time T (that is $\exists \sigma, \pi : X_T^{\sigma} \neq X_T^{\pi}$), then ...

- $\blacktriangleright \exists v: \ X^{\sigma}_T(v) \neq X^{\pi}_T(v)$
- \blacktriangleright What happened at T', the last time we updated v?

 $\blacktriangleright \exists v': X^{\sigma}_{T'}(v') \neq X^{\pi}_{T'}(v')$

. . .

- ▶ What happened at T'', the last time we updated v'?
- ► $R_{T''} = \bullet$ and $\exists C'' \ni v'$: almost full in $X_{T''}^{\sigma}$ but not so in $X_{T''}^{\pi}$

Nodes. foreach hyperedge C: foreach time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t}$

Nodes. foreach hyperedge C: foreach time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t} := \{\tau \in (t - n, t] : v_\tau \in C\}$ Arcs. $e_{C',t'} \leftarrow e_{C,t}$ iff t' < t and $(e_{C',t'} \cap e_{C,t}) \neq \emptyset$

Nodes. foreach hyperedge C: foreach time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t} := \{\tau \in (t - n, t] : v_\tau \in C\}$ Arcs. $e_{C',t'} \leftarrow e_{C,t}$ iff t' < t and $(e_{C',t'} \cap e_{C,t}) \neq \emptyset$

Nodes. foreach hyperedge C: foreach time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t} := \{\tau \in (t - n, t] : v_\tau \in C\}$ **Arcs.** $e_{C',t'} \leftarrow e_{C,t}$ iff t' < t and $(e_{C',t'} \cap e_{C,t}) \neq \emptyset$

Lemma.

If no coalescence occur by time T, then there exists an *induced* path $P = (e_{\ell} \leftarrow \cdots \leftarrow e_1)$ of length $\ell \geq T/n$ in the witness graph such that $R_t = \bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_i$.

Nodes. for each hyperedge C: for each time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t} := \{\tau \in (t - n, t] : v_\tau \in C\}$ Arcs. $e_{C',t'} \leftarrow e_{C,t}$ iff t' < t and $(e_{C',t'} \cap e_{C,t}) \neq \emptyset$

Lemma.

If no coalescence occur by time T, then there exists an *induced* path $P = (e_{\ell} \leftarrow \cdots \leftarrow e_1)$ of length $\ell \geq T/n$ in the witness graph such that $R_t = \bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_i$.

bad event B_P ; $\mathbb{P}(B_P)$ is very low!

Nodes. foreach hyperedge C: foreach time t = 1, ..., T: if $v_t \in C$ then create a node $e_{C,t} := \{\tau \in (t - n, t] : v_\tau \in C\}$ Arcs. $e_{C',t'} \leftarrow e_{C,t}$ iff t' < t and $(e_{C',t'} \cap e_{C,t}) \neq \emptyset$

Lemma.

union bound

If no coalescence occur by time T, then there exists an *induced* path $P = (e_{\ell} \leftarrow \cdots \leftarrow e_1)$ of length $\ell \geq T/n$ in the witness graph such that $R_t = \bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_i$.

bad event B_P ; $\mathbb{P}(B_P)$ is very low!

$$n = 4 \qquad \qquad \frac{t \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6 \qquad 7 \qquad \cdots}{v_t \qquad 1 \qquad 2 \qquad 3 \qquad 4 \qquad 1 \qquad 2 \qquad 3 \qquad \cdots}$$

$$C := \{1, 2, 4\} \qquad e_{C,t} \qquad \{1\} \qquad \{1, 2\} \qquad \{1, 2, 4\} \qquad \{2\} \qquad \{2\} \qquad \{3, 6\} \qquad \{6, 7\}$$

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

consider odd indices: the sets are disjoint!

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

> consider odd indices: the sets are disjoint! $\mathbb{P}(B_P) \leq \prod_{i=1}^{\ell/2} 2^{-|C_{2i-1}|}$

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

> consider odd indices: the sets are disjoint! $\mathbb{P}(B_P) \leq \prod_{i=1}^{\ell/2} 2^{-|C_{2i-1}|}$

Assumption: Constant $\varepsilon \in (0, 1)$ and function $C \mapsto f(C) \in (0, 1)$ satisfy

$$2^{-|C|} \le (1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C' \sim C} (1-f(C')), \quad \forall C.$$

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

> consider odd indices: the sets are disjoint! $\mathbb{P}(B_P) \leq \prod_{i=1}^{\ell/2} 2^{-|C_{2i-1}|}$

Assumption: Constant $\varepsilon \in (0, 1)$ and function $C \mapsto f(C) \in (0, 1)$ satisfy

$$2^{-|C|} \le (1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C'\sim C} (1-f(C')), \quad \forall C.$$

$$\leq (1 - \varepsilon)^{\ell/2} \prod_{i=1}^{\ell/2} \frac{f(C_{2i-1})}{2|C_{2i-1}|} \prod_{C' \sim C_{2i-1}} (1 - f(C'))$$

reminds us of Galton-Watson branching process

 $C_{\ell} \quad C_{\ell-1} \qquad C_4 \quad C_3 \quad C_2 \quad C_1$ Given induced path $P = (e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_4 \leftarrow e_3 \leftarrow e_2 \leftarrow e_1)$

> consider odd indices: the sets are disjoint! $\mathbb{P}(B_P) \leq \prod_{i=1}^{\ell/2} 2^{-|C_{2i-1}|}$

Assumption: Constant $\varepsilon \in (0, 1)$ and function $C \mapsto f(C) \in (0, 1)$ satisfy

$$2^{-|C|} \le (1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C'\sim C} (1-f(C')), \quad \forall C.$$

$$\leq (1 - \varepsilon)^{\ell/2} \prod_{i=1}^{\ell/2} \frac{f(C_{2i-1})}{2|C_{2i-1}|} \prod_{C' \sim C_{2i-1}} (1 - f(C'))$$

reminds us of Galton-Watson branching process

Sketch: Map path P to a labelled tree \mathcal{T}_P . Then the product corresponds to the probability that \mathcal{T}_P is generated by a suitable G-W process. Hence $\sum_P \operatorname{product}(P) \leq 1$.

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{3/2}}$.

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{3/2}}$.

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{5/2}}$.

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{5/2}}$.

$$\exists P = (e_{\ell} \leftarrow \dots \leftarrow e_1) : B_P \quad \left\{ \right.$$

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{5/2}}$.

$$\exists P = (e_{\ell} \leftarrow \dots \leftarrow e_1) : B_P \quad \left\{ \begin{array}{cc} (i) & \exists Q = (e_{\ell-1} \leftarrow \dots \leftarrow e_1) : B_Q \\ \end{array} \right.$$

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{5/2}}$.

$$\exists P = (e_{\ell} \leftarrow \dots \leftarrow e_1) : B_P \quad \begin{cases} (i) & \exists Q = (e_{\ell-1} \leftarrow \dots \leftarrow e_1) : B_Q \\ (ii) & \exists e_{\ell} \text{ validly extends } Q \end{cases}$$

Take $f(C) := 1/(kd)^2$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k/2}}{k^{9/2}}$.

Refinement: inductive path-extension argument.

$$\exists P = (e_{\ell} \leftarrow \dots \leftarrow e_1) : B_P \quad \begin{cases} (i) & \exists Q = (e_{\ell-1} \leftarrow \dots \leftarrow e_1) : B_Q \\ (ii) & \exists e_{\ell} \text{ validly extends } Q \end{cases}$$

Key: If #extensions is large, then the "intersection" between e_{ℓ} and Q is small thus $\mathbb{P}[(ii) \mid (i)]$ is small