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[BGGGS19]• d > 5 · 2k/2 : no poly-time approximate sampler assuming RP 6= NP

For k-uniform d-regular hypergraphs,

Questions:

• perfect (instead of approximate) samples?

• simpler analysis?

• non-uniform, non-regular?

“coupling from the past”

systematic scan + witness structure for analysis
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The Systematic Scan Coupling from the Past

time t

Update schedule & rule:

1 2 · · · n 1 2 · · · n

At time t,

• Flip a fair coin Rt ∈ {•, ◦};
• Colour vt by Rt if allowed.

vt =

Convergence:
Group every n steps into one block.

For each independent set σ, denote by (Xσ
t )

the Markov chain starting from σ.

Grand coupling: Run these chains in par-
allel, sharing the same random coin Rt.

Coalescence by time T :
Xσ
T = Xπ

T for all σ, π ∈ Ω.

CFTP transformation: If we can design
a routine that detects coalescence, then we
can turn it into a perfect sampler!

[PW96]
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Given induced path P = (e` ← e`−1 ← · · · ← e4 ← e3 ← e2 ← e1)

consider odd indices: the sets are disjoint!

P(BP ) ≤
∏`/2
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C` C`−1 C4 C3 C2 C1

Assumption: Constant ε ∈ (0, 1) and function C 7→ f(C) ∈ (0, 1) satisfy

2−|C| ≤ (1− ε)f(C)

2|C|
∏
C′∼C

(1− f(C ′)), ∀C.

reminds us of Galton-Watson branching process

Sketch: Map path P to a labelled tree TP . Then the product corresponds to the proba-
bility that TP is generated by a suitable G-W process. Hence

∑
P product(P ) ≤ 1.
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When Hypergraph Is k-Uniform and d-Regular

Take f(C) := 1/(kd)2 for all C, then the constraint becomes d ≤ c · 2
k/2

k3/2
.

Refinement: inductive path-extension argument.

∃P = (e` ← · · · ← e1) : BP
∃Q = (e`−1 ← · · · ← e1) : BQ
∃e` validly extends Q{

Key: If #extensions is large, then the “intersection” between e` and Q is small

(i)

(ii)

thus P[(ii) | (i)] is small


