A Perfect Sampler for Hypergraph Independent Sets

Guoliang Qiu, Yanheng Wang, Chihao Zhang

A Perfect Sampler for Hypergraph Independent Sets vertex set $[n]$

A Perfect Sampler for Hypergraph Independent Sets vertex set $[n] \quad \sigma:[n] \rightarrow\{\bullet, \circ\}$ such that

no hyperedge is fully-॰

A Perfect Sampler for Hypergraph Independent Sets

outputs an independent set uniformly at random
vertex set $[n]$

$\sigma:[n] \rightarrow\{\bullet, \circ\}$ such that
no hyperedge is fully- \bullet

Motivation and Results

For k-uniform d-regular hypergraphs,

- $d>5 \cdot 2^{k / 2}$: no poly-time approximate sampler assuming RP $\neq \mathrm{NP}$
- $d \leq c \cdot 2^{k / 2}$: poly-time approximate sampler via Glauber dynamics

Motivation and Results

For k-uniform d-regular hypergraphs,

- $d>5 \cdot 2^{k / 2}$: no poly-time approximate sampler assuming RP $\neq \mathrm{NP}$
- $d \leq c \cdot 2^{k / 2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples?
- simpler analysis?

Motivation and Results

For k-uniform d-regular hypergraphs,

- $d>5 \cdot 2^{k / 2}$: no poly-time approximate sampler assuming RP $\neq \mathrm{NP}$
[BGGGS19]
- $d \leq c \cdot 2^{k / 2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples?
- simpler analysis?

Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected running time is polynomial, assuming

- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k / 2}$ for k-uniform d-regular hypergraphs.

Motivation and Results

For k-uniform d-regular hypergraphs,

- $d>5 \cdot 2^{k / 2}$: no poly-time approximate sampler assuming RP $\neq \mathrm{NP}$
- $d \leq c \cdot 2^{k / 2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples? \longrightarrow "coupling from the past"
- simpler analysis?

Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected running time is polynomial, assuming

- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k / 2}$ for k-uniform d-regular hypergraphs.

Motivation and Results

For k-uniform d-regular hypergraphs,

- $d>5 \cdot 2^{k / 2}$: no poly-time approximate sampler assuming RP $\neq \mathrm{NP}$

[BGGGS19]

- $d \leq c \cdot 2^{k / 2}$: poly-time approximate sampler via Glauber dynamics

Questions:

- non-uniform, non-regular?
- perfect (instead of approximate) samples? \longrightarrow "coupling from the past"
\bullet simpler analysis? \longrightarrow systematic scan + witness structure for analysis
Result: A sampler that outputs a perfectly uniform independent set a.s. Its expected running time is polynomial, assuming
- either a LLL condition for general hypergraphs;
- or $d \leq c \cdot 2^{k / 2}$ for k-uniform d-regular hypergraphs.

The Systematic Scan

Update schedule \& rule:

The Systematic Scan

Update schedule \& rule:
$\xrightarrow[v_{t}=1]{ }$ time t

The Systematic Scan

Update schedule \& rule:

The Systematic Scan

Update schedule \& rule:
$\overrightarrow{v_{t}=1} 22 \cdots n \quad$ time t

The Systematic Scan

Update schedule \& rule:
$\begin{array}{lllll} \\ v_{t}=1 & 2 & \cdots & n & 1\end{array}$ time t

The Systematic Scan

Update schedule \& rule:

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $v_{t}=1$ | 2 | \cdots | n | 1 | 2 | time t

The Systematic Scan

Update schedule \& rule:

$v_{t}=1$	2	\cdots	n	1	2	\cdots	n

The Systematic Scan

Update schedule \& rule:

$v_{t}=1$	2	\cdots	n	1	2	\cdots	n

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

The Systematic Scan

Update schedule \& rule:

$\overline{v_{t}}=$| 1 | 2 | \cdots | n | 1 | 2 | \cdots | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\longrightarrow time t

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

Convergence:

Group every n steps into one block.

The Systematic Scan

Update schedule \& rule:

$\overline{v_{t}}=$| 1 | 2 | \cdots | n | 1 | 2 | \cdots | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\longrightarrow time t

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past

For each independent set σ, denote by $\left(X_{t}^{\sigma}\right)$ the Markov chain starting from σ.

The Systematic Scan

Update schedule \& rule:

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past

For each independent set σ, denote by $\left(X_{t}^{\sigma}\right)$ the Markov chain starting from σ.

Grand coupling: Run these chains in parallel, sharing the same random coin R_{t}.

The Systematic Scan

Update schedule \& rule:

$\overline{v_{t}=}$| 1 | 2 | \cdots | n | 1 | 2 | \cdots | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\longrightarrow time t

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past

For each independent set σ, denote by $\left(X_{t}^{\sigma}\right)$ the Markov chain starting from σ.

Grand coupling: Run these chains in parallel, sharing the same random coin R_{t}.

Coalescence by time T :
$X_{T}^{\sigma}=X_{T}^{\pi}$ for all $\sigma, \pi \in \Omega$.

The Systematic Scan

Update schedule \& rule:

$\overline{v_{t}=}$| 1 | 2 | \cdots | n | 1 | 2 | \cdots | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\longrightarrow time t

At time t,

- Flip a fair coin $R_{t} \in\{\bullet, \circ\} ;$
- Colour v_{t} by R_{t} if allowed.

Convergence:

Group every n steps into one block.

Coupling from the Past

For each independent set σ, denote by (X_{t}^{σ}) the Markov chain starting from σ.

Grand coupling: Run these chains in parallel, sharing the same random coin R_{t}.

Coalescence by time T :
$X_{T}^{\sigma}=X_{T}^{\pi}$ for all $\sigma, \pi \in \Omega$.
CFTP transformation: If we can design a routine that detects coalescence, then we can turn it into a perfect sampler!

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then \ldots

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then \ldots
$\triangleright \exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then ...
$\triangleright \exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$

- What happened at T^{\prime}, the last time we updated v ?

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then ...
$\triangleright \exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$

- What happened at T^{\prime}, the last time we updated v ?
$\triangleright R_{T^{\prime}}=\bullet$ and $\exists C^{\prime} \ni v$:almost full in $X_{T^{\prime}}^{\sigma}$ but not so in $X_{T^{\prime}}^{\pi}$

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then ...

- $\exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$
- What happened at T^{\prime}, the last time we updated v ?
$\triangleright R_{T^{\prime}}=\bullet$ and $\exists C^{\prime} \ni v$:almost full in $X_{T^{\prime}}^{\sigma}$ but not so in $X_{T^{\prime}}^{\pi}$

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then \ldots

- $\exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$
- What happened at T^{\prime}, the last time we updated v ?
$\triangleright R_{T^{\prime}}=\bullet$ and $\exists C^{\prime} \ni v$:almost full in $X_{T^{\prime}}^{\sigma}$ but not so in $X_{T^{\prime}}^{\pi}$

$\triangleright \exists v^{\prime}: X_{T^{\prime}}^{\sigma}\left(v^{\prime}\right) \neq X_{T^{\prime}}^{\pi}\left(v^{\prime}\right)$
- What happened at $T^{\prime \prime}$, the last time we updated v^{\prime} ?
$\triangleright R_{T^{\prime \prime}}=\bullet$ and $\exists C^{\prime \prime} \ni v^{\prime}$: almost full in $X_{T^{\prime \prime}}^{\sigma}$ but not so in $X_{T^{\prime \prime}}^{\pi}$

Idea of Coalescence Detection

If not coalesce by time T (that is $\exists \sigma, \pi: X_{T}^{\sigma} \neq X_{T}^{\pi}$), then \ldots

- $\exists v: X_{T}^{\sigma}(v) \neq X_{T}^{\pi}(v)$
- What happened at T^{\prime}, the last time we updated v ?
$\triangleright R_{T^{\prime}}=\bullet$ and $\exists C^{\prime} \ni v$:almost full in $X_{T^{\prime}}^{\sigma}$ but not so in $X_{T^{\prime}}^{\pi}$

$\triangleright \exists v^{\prime}: X_{T^{\prime}}^{\sigma}\left(v^{\prime}\right) \neq X_{T^{\prime}}^{\pi}\left(v^{\prime}\right)$
- What happened at $T^{\prime \prime}$, the last time we updated v^{\prime} ?
$\triangleright R_{T^{\prime \prime}}=\bullet$ and $\exists C^{\prime \prime} \ni v^{\prime}$: almost full in $X_{T^{\prime \prime}}^{\sigma}$ but not so in $X_{T^{\prime \prime}}^{\pi}$

Witness Directed Graph Up to T
Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:
if $v_{t} \in C$ then create a node $e_{C, t}$

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	\vdots	2	3	4	5	6	7	\cdots	
v_{t}	1	2	3	4	1	2	3	\cdots	
	$:$								

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7
v_{t}	1	2	3	4	$\begin{gathered} 1 \\ e_{C, 5} \\ \{2,4,5\} \end{gathered}$	2	3

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7	\cdots
v_{t}	1	2	3	4	1	2	3	\cdots
$e_{C, t}$	$\{1\}$	$\{1,2\}$		$\{1,2,4\}$	$\{2,4,5\}$	$\{4,5,6\}$		
$e_{D, t}$		$\{2\}$	$\{2,3\}$			$\{3,6\}$	$\{6,7\}$	

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Arcs. $\quad e_{C^{\prime}, t^{\prime}} \leftarrow e_{C, t}$ iff $t^{\prime}<t$ and $\left(e_{C^{\prime}, t^{\prime}} \cap e_{C, t}\right) \neq \emptyset$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7	\cdots
v_{t}	1	2	3	4	1	2	3	\cdots
$e_{C, t}$	$\{1\}$	$\{1,2\}$		$\{1,2,4\}$	$\{2,4,5\}$	$\{4,5,6\}$		
$e_{D, t}$		$\{2\}$	$\{2,3\}$			$\{3,6\}$	$\{6,7\}$	

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Arcs. $\quad e_{C^{\prime}, t^{\prime}} \leftarrow e_{C, t}$ iff $t^{\prime}<t$ and $\left(e_{C^{\prime}, t^{\prime}} \cap e_{C, t}\right) \neq \emptyset$

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7	
v_{t}	1	2	3	4	1	2	3	
$e_{C, t}$ $e_{D, t}$	$\{1\} \leftarrow\{1,2\} \nsim\{1,2,4\}\{2,4,5\} \not-\{4,5,6\}$							

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Arcs. $\quad e_{C^{\prime}, t^{\prime}} \leftarrow e_{C, t}$ iff $t^{\prime}<t$ and $\left(e_{C^{\prime}, t^{\prime}} \cap e_{C, t}\right) \neq \emptyset$

Lemma.

If no coalescence occur by time T, then there exists an induced path $P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right)$ of length $\ell \geq T / n$ in the witness graph such that $R_{t}=\bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_{i}$.

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7
v_{t}	1	2	3	4	1	2	3
$e_{C, t}$ $e_{D, t}$	$\{1\} \leftarrow\{1,2\} \lessdot \sim\{1,2,4\}-\{2,4,5\}-\{4,5,6\}$						

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Arcs. $\quad e_{C^{\prime}, t^{\prime}} \leftarrow e_{C, t}$ iff $t^{\prime}<t$ and $\left(e_{C^{\prime}, t^{\prime}} \cap e_{C, t}\right) \neq \emptyset$

Lemma.

If no coalescence occur by time T, then there exists an induced path $P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right)$ of length $\ell \geq T / n$ in the witness graph such that $R_{t}=\bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_{i}$.
bad event $B_{P} ; \mathbb{P}\left(B_{P}\right)$ is very low!

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7	\cdots
v_{t}	1	2	3	4	1	2	3	\cdots

$$
e_{C, t}
$$

$$
e_{D, t}
$$

$$
\begin{aligned}
\{1\} \longleftarrow & \{1,2\} \lessdot\{1,2,4\}: 2,4,5\}-\{4,5,6\} \\
& \{2\} \lessdot\{2,3\}
\end{aligned}
$$

Witness Directed Graph Up to T

Nodes. foreach hyperedge C :
foreach time $t=1, \ldots, T$:

$$
\text { if } v_{t} \in C \text { then create a node } e_{C, t}:=\left\{\tau \in(t-n, t]: v_{\tau} \in C\right\}
$$

Arcs. $\quad e_{C^{\prime}, t^{\prime}} \leftarrow e_{C, t}$ iff $t^{\prime}<t$ and $\left(e_{C^{\prime}, t^{\prime}} \cap e_{C, t}\right) \neq \emptyset$
Lemma. union bound
If no coalescence occur by time T, then there exists an induced path $P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right)$ of length $\ell \geq T / n$ in the witness graph such that $R_{t}=\bullet$ for all $t \in \bigcup_{i=1}^{\ell} e_{i}$.
bad event $B_{P} ; \mathbb{P}\left(B_{P}\right)$ is very low!

$$
\begin{aligned}
& n=4 \\
& C:=\{1,2,4\} \\
& D:=\{2,3\}
\end{aligned}
$$

t	1	2	3	4	5	6	7	\cdots
v_{t}	1	2	3	4	1	2	3	\cdots

$$
e_{C, t}
$$

$$
e_{D, t}
$$

$$
\{1\} \longleftarrow\{1,2\} \lessdot \sim\{1,2,4\}\{2,4,5\}-\{4,5,6\}
$$

Analysis

$C_{\ell} \quad C_{\ell-1} \quad C_{4} \quad C_{3} \quad C_{2} \quad C_{1}$
Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$

Analysis

$C_{\ell} \quad C_{\ell-1} \quad C_{4} \quad C_{3} \quad C_{2} \quad C_{1}$
Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$ consider odd indices: the sets are disjoint!

Analysis

$C_{\ell} \quad C_{\ell-1} \quad C_{4} \quad C_{3} \quad C_{2} \quad C_{1}$
Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$

$$
\begin{aligned}
& \text { consider odd indices: the sets are disjoint! } \\
& \mathbb{P}\left(B_{P}\right) \leq \prod_{i=1}^{\ell / 2} 2^{-\left|C_{2 i-1}\right|}
\end{aligned}
$$

Analysis

Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$

$$
\begin{aligned}
& \text { consider odd indices: the sets are disjoint! } \\
& \mathbb{P}\left(B_{P}\right) \leq \prod_{i=1}^{\ell / 2} 2^{-\left|C_{2 i-1}\right|}
\end{aligned}
$$

Assumption: Constant $\varepsilon \in(0,1)$ and function $C \mapsto f(C) \in(0,1)$ satisfy

$$
2^{-|C|} \leq(1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C^{\prime} \sim C}\left(1-f\left(C^{\prime}\right)\right), \quad \forall C .
$$

Analysis

Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$

$$
\begin{aligned}
& \text { consider odd indices: the sets are disjoint! } \\
& \mathbb{P}\left(B_{P}\right) \leq \prod_{i=1}^{\ell / 2} 2^{-\left|C_{2 i-1}\right|}
\end{aligned}
$$

Assumption: Constant $\varepsilon \in(0,1)$ and function $C \mapsto f(C) \in(0,1)$ satisfy

$$
2^{-|C|} \leq(1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C^{\prime} \sim C}\left(1-f\left(C^{\prime}\right)\right), \quad \forall C .
$$

$$
\leq(1-\varepsilon)^{\ell / 2} \prod_{i=1}^{\ell / 2} \frac{f\left(C_{2 i-1}\right)}{2\left|C_{2 i-1}\right|} \prod_{C^{\prime} \sim C_{2 i-1}}\left(1-f\left(C^{\prime}\right)\right)
$$

Analysis

Given induced path $P=\left(e_{\ell} \leftarrow e_{\ell-1} \leftarrow \cdots \leftarrow e_{4} \leftarrow e_{3} \leftarrow e_{2} \leftarrow e_{1}\right)$

$$
\begin{aligned}
& \text { consider odd indices: the sets are disjoint! } \\
& \mathbb{P}\left(B_{P}\right) \leq \prod_{i=1}^{\ell / 2} 2^{-\left|C_{2 i-1}\right|}
\end{aligned}
$$

Assumption: Constant $\varepsilon \in(0,1)$ and function $C \mapsto f(C) \in(0,1)$ satisfy

$$
2^{-|C|} \leq(1-\varepsilon) \frac{f(C)}{2|C|} \prod_{C^{\prime} \sim C}\left(1-f\left(C^{\prime}\right)\right), \quad \forall C .
$$

$$
\leq(1-\varepsilon)^{\ell / 2} \prod_{i=1}^{\ell / 2} \frac{f\left(C_{2 i-1}\right)}{2\left|C_{2 i-1}\right|} \prod_{C^{\prime} \sim C_{2 i-1}}\left(1-f\left(C^{\prime}\right)\right)
$$

reminds us of Galton-Watson branching process

Sketch: Map path P to a labelled tree \mathcal{T}_{P}. Then the product corresponds to the probability that \mathcal{T}_{P} is generated by a suitable G-W process. Hence $\sum_{P} \operatorname{product}(P) \leq 1$.

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{k^{3 / 2}}$.

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{k^{3}+2}$.

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{\frac{k^{3}+2}{2}}$.
Refinement: inductive path-extension argument.

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{\hat{k}^{0}+2}$.
Refinement: inductive path-extension argument.

$$
\exists P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right): B_{P} \quad\{
$$

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{\hat{k}^{0}+2}$.
Refinement: inductive path-extension argument.

$$
\exists P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right): B_{P} \quad\left\{\text { (i) } \exists Q=\left(e_{\ell-1} \leftarrow \cdots \leftarrow e_{1}\right): B_{Q}\right.
$$

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{\hat{k}^{0}+2}$.
Refinement: inductive path-extension argument.

$$
\exists P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right): B_{P} \quad\left\{\begin{array}{l}
\text { (i) } \exists Q=\left(e_{\ell-1} \leftarrow \cdots \leftarrow e_{1}\right): B_{Q} \\
\text { (ii) } \exists e_{\ell} \text { validly extends } Q
\end{array}\right.
$$

When Hypergraph Is k-Uniform and d-Regular

Take $f(C):=1 /(k d)^{2}$ for all C, then the constraint becomes $d \leq c \cdot \frac{2^{k / 2}}{\frac{k^{3}+2}{2}}$.
Refinement: inductive path-extension argument.

$$
\exists P=\left(e_{\ell} \leftarrow \cdots \leftarrow e_{1}\right): B_{P} \quad \begin{cases}\text { (i) } & \exists Q=\left(e_{\ell-1} \leftarrow \cdots \leftarrow e_{1}\right): B_{Q} \\ \text { (ii) } & \exists e_{\ell} \text { validly extends } Q\end{cases}
$$

Key: If \#extensions is large, then the "intersection" between e_{ℓ} and Q is small thus $\mathbb{P}[(i i) \mid$ (i)] is small

