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Jensen’s Inequality, Partition Functions, and
Models with Ternary Interactions

摘 要

PPZ 算法是一种解决 k-SAT 问题的随机算法，分析之在理论计算机科学中有重要意义。
其分析可被抽象为如下的图模型：给定一张 (k − 1)-正则有向图，设每个顶点独立取得在
[0, 1] 上均匀分布的随机值，若一顶点的值是其前驱邻点之中最大的，那么它得一分，否则
得零分；记全体顶点的总分为 S，则 PPZ 的成功概率恰正比于 E(2S) 的值。本文旨在寻找
该期望的上下界。我们借助信息论、统计物理和计数算法的相关技术，证明了一系列不等
式，具体如下：(1) 由变分视角和组合学方法得到了适用于二维方格图（k = 3 之特例）的
若干下界；(2) 采用信息论和统计物理手段证明了一系列普适上界；(3) 巧妙运用条件信息
熵证明了普适上界 2n·Θ(log k/k)，且说明了它在渐进意义上的最优性。除此以外，我们还探讨
了图围长很大时 E(2S) 的行为，猜想其仅与顶点数相关而与图结构无关，并为该猜想提供
了很强的理论证据。这些结果加深了我们对 PPZ 的理解，亦可能有助于分析类似的复杂概
率系统。

关键词：SAT 问题，PPZ 算法，配分函数，信息论
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ABSTRACT

We study a graphical model that captures the success probability of the PPZ algorithm
for k-SAT. Given a (k − 1)-regular digraph, we put on each vertex a [0, 1] uniform random
value independently. A vertex scores 1 if it gets the largest value amongst its predecessors.
Denoting S as the total score, we aim at bounding E(2S), a significant quantity in the
theoretical study of PPZ. Our methodologies borrow ideas from information theory, sta-
tistical physics and counting algorithms. We proved (i) a bunch of lower bounds, tailored
to the two-dimensional grid (where k = 3), by a variational principle and a combinatorial
embedding idea; (ii) a set of upper bounds that work for general k, via connections with
the Boltzmann distribution in statistical physics; (iii) a tight 2n·Θ(log k/k) upper bound for
general k by an entropy argument. We also reveal strong theoretical evidence that E(2S)
are essentially identical for all high-girth graphs of order n. Besides the immediate conse-
quence in the context of PPZ, we hope the various methods presented in this thesis will
benefit other fields and applications as well.

Key words: SAT, PPZ algorithm, partition functions, information theory
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Chapter 1 Introduction

The satisfiability problem, or SAT for short, poses constant challenge for computer
scientists from its outset. Over the decades, several ingenious algorithms have reduced
the worst-case running time for k-SAT (i.e. SAT with k-CNF as input formulae) down
to moderate exponentials. Among these lie the PPZ algorithm [16] and its descendant
PPSZ [15] that enjoy both simplicity and efficiency. The algorithms begin by permuting
(i.e. ordering) the variables randomly. Then, following this order, they assign 0/1 to each
variable v by flipping fair coins, unless the value of v could be inferred by some fixed
criterion. The choice of criterion is exactly where PPZ and PPSZ differ. PPZ’s slogan
reads “look for unit clause (v) or (¬v); if we find one then v must be 1/0”. PPSZ uses a
stronger strategy: “check if there is a set of up to h clauses that logically imply v or ¬v”.
Note that for h = 1 this is the same as PPZ.

Our study is motivated by the analyses of PPZ/PPSZ when the input formula has a
unique satisfying assignment α. The algorithms find α successfully with probability

P(α) = E
π∼U

(
2−(n−

∑
v Sv(π))

)
= 2−n · E

π∼U

(
2
∑

v Sv(π)
)

where π is sampled uniformly from all permutations on [n] = {1, 2, . . . , n}, and Sv(π) ∈
{0, 1} signals if we could save the coin flip at v under permutation π. If nothing is saved,
then the algorithms degenerate to random guess (with success probability 2−n). But the
insight is: for a considerable amount of permutations we actually save a lot.

Since α is assumed unique, altering any variable v in α will violate some clause. In
particular, there must be a clause containing v where all other literals evaluate to 0 under
α. We call it a critical clause for v and assume it is unique for simplicity. Then in PPZ,
Sv(π) = 1 if and only if v comes last in the critical clause under permutation π. Hence, we
may identify the problem with a graphical model G = (V,E), where V = [n] is exactly the
set of variables, and uv ∈ E if u appears in the critical clause of v. Clearly Sv(π) = 1 if
and only if vertex v is bigger than all its predecessors under π. This graphical model nicely
captures the local nature of the algorithm and will be the subject of our study.

By a direct application of Jensen’s inequality, Eπ

(
2
∑

v Sv(π)
)
≥ 2Eπ(

∑
v Sv(π)) = 2n/k.

There are two interesting questions to ask: By what methods can we improve this lower
bound? And, from the adversary’s view, what is the absolute barrier or upper bound?
Answering these questions will help us understand the behaviour of PPZ, and also hint
about new approaches in analysing PPSZ.

As we will explain in Section 1.2, our problem has intimate connection to partition
functions, a central object in statistical physics as well as in combinatorics. Partition
functions of many physical systems have been extensively studied by statistical physicists.
Although the results did not always follow mathematical rigour, many were later proved
correct and inspiring; they might just inspire us equally well.

In the computer science community, efforts are devoted to efficient approximation al-
gorithms for partition functions. Three genres have made major success. The first genre
is based on Markov Chain Monte Carlo [12] and the general equivalence between sampling
and counting [9]. It builds a Markov chain with appropriate stationary distribution and
tries to show its fast convergence. The second genre depends on the correlation decay prop-
erty in statistical physics, which recursively computes a marginal distribution and argues

– Page 1 of 36 –
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that the boundary effect decays quickly as the distance increases [2, 18]. The last and also
the most analytical one relies upon Barvinok’s approach, where it uses a low-degree Taylor
expansion to approximate the log-partition function [3].

Despite rich literature in both fields, our problem is peculiar in two ways. First, our
model differs from well-studied physical models since it involves a k-ary, asymmetric score
measure and large number of spins; see Section 1.2 for details. Second, algorithmic results
are not directly applicable since we are searching for explicit bounds. Hence, new approaches
or adaptions must be made. This serves as another motivation for us: tools developed here
could possibly feed back to the study of complicated systems in computer science and
statistical physics.

1.1 Definitions and Conventions
Throughout the thesis we consider the abstract model defined below. Let G = (V,E)

be a (k − 1)-regular directed graph where V = [n]. For k = 3 we mainly study the√
n ×

√
n square grid (with edges directing from left to right and from bottom to top,

wrapping around at boundaries). Write ♭v := {u ∈ V : uv ∈ E} for v’s predecessors,
♯v := {u ∈ V : vu ∈ E} for its successors, and ∂v := ♭v ∪ ♯v. The regularity assumption
means that |♭v| = |♯v| = k − 1.

Sample a state x ∈ [0, 1]n uniformly and let

Sv(x) :=

{
1 xv ≥ maxx♭v

0 otherwise

be the “local score” of v under x. The total score is S(x) :=
∑

v∈V Sv(x). We aim at
bounding Ex∼U (2

S(x)), both from below and from above. Note that sampling a uniform
x ∈ [0, 1]n is equivalent to generating uniform permutations π on [n].

Here are some notational conventions:

Probability. The symbols µ and ν are reserved for probability distributions. The letter
U stands for the uniform distribution (whose support will be clear from context). At the
beginning, we will put subscripts in P and E to stress the underlying probability space. For
example, subscript x ∼ µ means that x is drawn with respect to distribution µ. As we go
deeper, we would drop subscripts when the context is clear.

Information theory. The entropy of µ is defined as H(µ) := −Ex∼µ(logµ(x)), where
the logarithm is always in base 2. Here is a caveat: if µ is a continuous distribution (i.e. a
density) then H(µ) could be negative, so we should be alert in this case. Nevertheless, the
chain rule of entropy still apply. When the underlying distribution of random variable x is
clear (say µ), we also write H(x) to mean H(µ). We write hb(p) := −p log p−(1−p) log(1−p)

for the binary entropy function. The quantity KL(µ‖ν) := Ex∼µ

(
log µ(x)

ν(x)

)
is called the

Kullback-Leibler divergence between µ and ν. It is a standard fact that KL(µ‖ν) ≥ 0 even
when µ and ν are continuous distributions.

1.2 Connection to Partition Functions
For each λ ≥ 1 we define a distribution Dλ on [0, 1]n by Dλ(x) := λS(x)

Z(λ)
, where the

normalising constant Z(λ) is exactly Ex∼U (λ
S(x)); in particular we are interested in Z(2).

We adopt the shorthand D := D2 since we frequently work in this distribution.
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In statistical physics, a distribution in the same form as Dλ is called a Boltzmann
distribution, with the normalising constant termed partition function. Different definitions
of the score measure give rise to different models. One of the most-studied examples is
the Ising model: a state x ∈ {−1, 1}n has score S(x) :=

∑
uv∈E xuxv, and occurs with

probability P(x) := λS(x)

ZIsing(λ)
. A bulk of literature is devoted to computing the Ising partition

function ZIsing(λ) and related values. However, there are some key features that distinguish
our model from existing statistical physics models.

k-ary asymmetric interaction. Recall that our local score measure, Sv, involves inter-
actions among v and its k − 1 predecessors. Even in the grid case we still have ternary
interactions. Also note that v is asymmetric to ♭v. In contrast, well-studied statistical
models (e.g. the Ising model, the hard-core model, the monomer-dimer system) usually
exhibit a binary symmetric interaction.

Large number of spins. A state x in our model is a real vector in [0, 1]n, so there
are uncountably many possible “spins” for each vertex. Even if we discretised the model,
the number of possible spins would still be large. Such systems are far less understood in
statistical physics than “two-spin” systems (e.g. the Ising model).

1.3 Organisation of the Thesis
We set off our journey with some breezing lower and upper bounds in Chapter 2. Specif-

ically, we regard Z(λ) as an maxima in a variational problem over distributions. The
methods illustrate several key ingredients in later materials. In Chapter 3 we elucidate two
combinatorial ideas that help us polish previous bounds. The highlight comes at Chapter 4,
where we apply information-theoretic techniques to significantly sharpen the upper bound
down to 2n·Θ(log k/k). As we will see, it is the best possible asymptotics we could expect for
general graphs. However, for high-girth graphs this bound might still be loose. Chapter 5
investigates the high-girth scenario and concludes the thesis by open problems.

Instead of collecting literature at one place, we would rather devote a separate space
for related work at the end of each chapter. We hope this approach will group information
more effectively and serve the reader better.

– Page 3 of 36 –
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Chapter 2 A Variational View

Let us prepare the ground by exploring a simple idea for both lower and upper bounds.
Let µ be any distribution supported on [0, 1]n. By non-negativity of KL divergence,

0 ≤ KL(µ‖Dλ) = E
x∼µ

(logµ(x)− logDλ(x))

= −H(µ)− E
x∼µ

(S(x) logλ− logZ(λ))

= logZ(λ)−H(µ)− logλ · E
x∼µ

(S(x)).

Specifically for λ = 2,
Z(2) ≥ 2Ex∼µ(S(x))+H(µ) =: 2F(µ) (2–1)

where the inequality is tight if and only if µ = D. Hence, the distribution D is the unique
maxima of the functional F : µ 7→ Ex∼µ(S(x))+H(µ). This view has two ways of utilisation:
for lower bounds, we simply make up a “good and simple” µ and evaluate the functional;
for upper bounds, we turn to analyse D and bound F(D) from above.

2.1 Lower Bounds
2.1.1 Markovian sampling

What is an ideal choice for µ? First, it should imitate the behaviour of D so that F(µ)

closely estimates F(D). Second, the evaluation of F(µ) should be simple, preferably boiled
into local computable snippets. The two goals are conflicting. If we take µ := D then the
first goal is perfectly satisfied but F(µ) is not amenable to evaluation. On the other hand,
if we choose µ := U then the converse is true.

A reasonable compromise would be sampling multiple independent Markov chains on
the graph. To be concrete, we assume working in the square grid and write xij for the
x value at row i, column j. We sample the first column {xi1} independently, and then
drive the remaining variables by

√
n independent Markov chains from left to right. That is,

µ(xij | xi,j−1) := ν(xi,j−1, xij) for some Markovian transition rule ν. The joint distribution
induced by this sampling scheme is our µ. See Figure 2–1 for illustration.

x11

x21

x31

x12

x22

x32

x13

x23

x33

Figure 2–1 The thick line shows one of
√
n Markov chains on the grid.

To further ease our computation, we assume sampling the first column uniformly, and
that all Markov chains have identical rule ν with uniform stationary distribution (equiva-
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lently, ν is doubly-stochastic). This way, (1) the marginal µ(xij) is uniform for all i, j; (2)
rule ν can be identified with a probability distribution on pairs, so its entropy, etc. are
well-defined.

For a distribution µ defined in this fashion, we can readily evaluate F(µ). Indeed, using
the chain rule, we can write an explicit formula for µ:

µ(x) =

√
n∏

i=1

√
n∏

j=2

ν(xi,j−1, xij).

Hence the entropy H(µ) is simply (n −
√
n)H(ν). As for the expected score, if we ignore

the first column, then

E
x∼µ

S(x) ≥

√
n∑

i=1

√
n∑

j=2

E
x∼µ

Sij(x)

=

√
n∑

i=1

√
n∑

j=2

E
(xi,j−1,xij)∼ν

xi+1,j∼U

Sij(xi,j−1, xij , xi+1,j)

= (n−
√
n) P

(xu,xv)∼ν
xw∼U

(xv ≥ xu, xw)

where in the last line we fix an arbitrary vertex v and understand u and w as its left and
lower neighbours, respectively. We see that F(µ) has been boiled down to local pieces:

F(µ) ≥ (n−
√
n)

 P
(xu,xv)∼ν

xw∼U

(xv ≥ xu, xw) +H(ν)

 . (2–2)

Now that designing Markovian rule ν is at our disposal, our hope is that some choice
is powerful enough to capture the behaviour of D. From a non-rigorous view, D should
display more or less “locality” as D1 = U does, so a Markovian rule might just be right.

Recall that D sets an incentive for high-score configurations (by a factor of 2 per gain).
In order to simulate D locally, it is tempting to design a clear-cut rule ν(xu, xv) ∝ 21[xu<xv].
But this chain is illegal in our framework as it doesn’t have uniform stationarity. Worse
still, the chain is non-reversible, leaving it painful to search for a stationary distribution.
So instead we shall adopt a weaker approximation.

Definition 1. Define the modular difference between a, b ∈ [0, 1] to be

a	 b :=

{
a− b a ≥ b

a− b+ 1 a < b
.

Pictorially, one may imagine bending the interval [0, 1] to a ring so that 0 ≡ 1 meet at
one point. Then a	 b is exactly the distance that we walk clockwise from b to a. Now we
let

ν(xu, xv) :=
1

Z
· 2[1−(xv⊖xu)

2]/2 (2–3)

where Z is a normalising constant. Note that ν is indeed doubly stochastic. This can
be checked by a direct calculation, or more cleverly, by observing that a 	 b is a uni-
form random variable if any of a, b is, and thus Exu∼U (ν(xu, xv)) = Exv∼U (ν(xu, xv)) =

Ey∼U

(
2(1−y2)/2

)
/Z = Z/Z = 1.
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This definition simulates D (to some extent) by favouring xu < xv over xu > xv. Imagine
decreasing xu gradually. At the moment it hits xv, the density shall experience a surge.
This behaviour matches D yet the form in (2–3) still looks arbitrary. We shall leave the
full rationale to the chapter notes. Next we proceed to compute (2–2):

P(xv ≥ xu, xw) =

∫ 1

0

dxv

∫ xv

0

ν(xu, xv) dxu

∫ xv

0

1 dxw

=
1

Z

∫ 1

0

y dy
∫ y

0

2[1−(y−z)2]/2 dz

=
1

Z

∫ 1

0

y dy
∫ y

0

2(1−z2)/2 dz

=
1

Z

∫ 1

0

2(1−z2)/2 dz
∫ 1

z

y dy =
1

Z
E

z∼U

[
1− z2

2
2(1−z2)/2

]
and

H(ν) = logZ − 1

Z
E

xu,xv∼U

[
1− (xv 	 xu)

2

2
· 2[1−(xv⊖xu)

2]/2

]
= logZ − 1

Z
E

z∼U

[
1− z2

2
2(1−z2)/2

]
.

So it turns out that their summation simplifies to logZ. Linking with (2–2) and (2–1)
we have Z(2) ≥ 2F(µ) ≥ Zn−

√
n. The constant Z is larger than 1.2665 by numerical

computation, so we obtain our first lower bound:

Theorem 1. Z(2) > 1.2665n−
√
n ≈ 1.2665n for the grid.

2.1.2 Towards optimal Markovian rule
Is there a better ν that beats the previous bound? More ambitiously, what does the

optimal ν look like? In the following we develop a systematic way to answer both questions.
In short, we decompose ν by a set of Fourier bases, approximate the target function (2–2)
by quadratic terms, optimise over the frequency domain, and transform the solution back.

Define a set of Fourier bases {ϕi(x)}i∈Z by

ϕi(x) :=

{
cos(2πix) i ≥ 0

sin(2πix) i < 0
.

The following lemma summarises some properties that we shall make use of. The calculation
is easy, so we omit the proof.

Lemma 2. For all i, j ∈ Z,

(a)
∫ 1

0
ϕi(x) dx = 1[i = 0];

(b)
∫ 1

0
ϕi(x)ϕj(x) dx = 1

2
· 1[i = j];

(c)
∫ 1

0
y cos(2πiy) dy = 1

2
· 1[i = 0] and

∫ 1

0
y sin(2πiy) dy = − 1

2πi
· 1[i 6= 0].

Now assume ν can be decomposed into the Fourier bases, i.e.

ν(x, y) =
∑
i,j∈Z

cij · ϕi(x)ϕj(y) (2–4)
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where cij are the Fourier coefficients of ν; they are temporarily unknown. Under our
framework ν should be doubly stochastic, so we have constraints ∀x : 1 =

∫ 1

0
ν(x, y) dy

and ∀y : 1 =
∫ 1

0
ν(x, y) dx. Plugging (2–4) in and using property (a), we have ∀x, y : 1 =∑

i∈Z ci0ϕi(x) =
∑

j∈Z c0jϕj(y). Therefore, ci0 = c0j = 0 for all i, j 6= 0, and c00 = 1.
Equation (2–4) thus simplifies to

ν(x, y) = 1 +
∑
i,j ̸=0

cij · ϕi(x)ϕj(y) =: 1 + δ(x, y) (2–5)

Recall our target function is (2–2). Next we shall write P(y ≥ x, z) +H(ν) in terms of
{cij}. Here we implicitly assume (x, y) ∼ ν and z ∼ U and drop subscripts for brevity. The
P(·) part writes

P(y ≥ x, z) =

∫ 1

0

y dy
∫ y

0

ν(x, y) dx

=
1

3
+
∑
i,j ̸=0

cij

∫ 1

0

yϕj(y) dy
∫ y

0

ϕi(x) dx

=
1

3
+
∑
i,j ̸=0

cij
2πi

∫ 1

0


y cos(2πjy) sin(2πiy) i > 0, j > 0

y sin(2πjy) sin(2πiy) i > 0, j < 0

y cos(2πjy)(1− cos(2πiy)) i < 0, j > 0

y sin(2πjy)(1− cos(2πiy)) i < 0, j < 0

 dy.

Applying property (c) with much care, one may deduce

P(y ≥ x, z) =
1

3
+
∑
i,j ̸=0

cij
8πi


α(i, j) i, j > 0

β(i, j) ij < 0

γ(i, j) i, j < 0

 (2–6)

where

α(i, j) =
1

π

{
− 1

2i
j = i

2i
(j+i)(j−i)

j 6= i
(2–7)

β(i, j) = −1[i+ j = 0] (2–8)

γ(i, j) =
1

π

{
−3
2i

j = i
2j

(j+i)(j−i)
− 2

j
j 6= i

. (2–9)

The H(·) part contains a sticky logarithm, so we adopt a quadratic approximation
(1 + t) ln(1 + t) ≈ 1 + t + t2

2
(which originates from the Taylor expansion ln(1 + t) =

x− x2

2
+ x3

3
−· · · ). Since we use a heuristic here, the final ν we found might not be the true
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optimal. But arguably, it should be pretty close to the truth and behaves similarly.

−H(ν) =
1

ln 2

∫ 1

0

∫ 1

0

(1 + δ(x, y)) ln(1 + δ(x, y)) dx dy

≈ 1

ln 2

∫ 1

0

∫ 1

0

δ(x, y) +
δ2(x, y)

2
dx dy

=
1

2 ln 2

∫ 1

0

∫ 1

0

δ2(x, y) dx dy

=
1

2 ln 2

∑
i,j,s,t̸=0

cij · cst
∫ 1

0

ϕi(x)ϕs(x) dx
∫ 1

0

ϕj(y)ϕt(y) dy

=
1

8 ln 2

∑
i,j ̸=0

c2ij (2–10)

where the third line uses property (a) and the last line uses (b). Note that we don’t
have such neat properties for ternary products, so a cubic approximation would be overly
complicated.

It remains to express our target value by merging (2–6) with (2–10):

P(y ≥ x, z) +H(ν) ≈ 1

3
+

1

8

∑
i,j ̸=0

(
α|β|γ(i, j)

πi
cij −

1

ln 2
c2ij

)
.

Observe that we could maximise the inner part for all i, j 6= 0 independently. Clearly the
best choice for the coefficients is given by

c∗ij :=
ln 2

2πi
α|β|γ(i, j). (2–11)

Conceptually we are done because this set of coefficients uniquely determines a rule ν∗.
We could use numerical computation to recover the appearance of ν∗ and to find out its
target value. But it would be even nicer to figure out an analytic formula:

Theorem 3. The rule ν∗ determined by {c∗ij} in (2–11) is exactly

ν∗(x, y) =

{
cx2 − 2cy2 + 1− c/3 x ≥ y

cx2 − 2cy2 + 1− c/3 + 2cy x < y
(2–12)

where c := ln 2
2

; see Figure 2–2 for a plot. The corresponding target value is 1.268066... >

1.2680. Consequently, Z(2) > 1.2680n−
√
n for grid.

Remark. The “optimal” coefficients {c∗ij} were derived by a heuristic (i.e. approximating
KL without formal justification), so the resulting ν∗ might not be the true optimal rule.
However, the target value of ν∗ stated above was evaluated by the proper KL formula rather
than its quadratic approximation, and thus can be trusted.

Proof. The formula can be verified by sending the right-hand side of (2–12) back to fre-
quency domain again. To avoid confusion let’s call the right-hand side ν(x, y). By
property (b), the orthogonality of Fourier bases, we could express its coefficients as
cij =

∫ 1

0
ν(x, y)ϕi(x)ϕj(y) dx dy. Computing the integral, one may find out that cij = c∗ij

for all i, j ∈ Z. Since a set of coefficients uniquely determines the rule, we must conclude
that ν = ν∗. The rest of the theorem can be verified by numerical calculation.
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Figure 2–2 Plot of the “almost optimal” rule ν∗

2.2 Upper Bounds
Recall from (2–1) that Z(2) = 2F(D) and we aim at understanding D. To break this

monolithic distribution down to small pieces, we appeal to a lemma in information theory:

Lemma 4 (Shearer). If I ⊆ 2[n], and every i ∈ n appears in at least k subsets in I, then

H(X1, X2, . . . , Xn) ≤
1

k

∑
I∈I

H(XI).

Proof. We use a shorthand X<a to denote random vector (X1, X2, . . . , Xa−1). For any
I ∈ I, order its members in increasing order: i1 < · · · < it. By chain rule,

H(XI) =
t∑

j=1

H(Xij | Xi1 , . . . , Xij−1
) ≥

t∑
j=1

H(Xij | X<ij )

where the inequality follows because we have strengthened the conditions. Summing over
all I ∈ I, we note that for each i ∈ [n], the term H(Xi | X<i) appears at least k times in
the right-hand side. Therefore,∑

I∈I

H(XI) ≥ k
n∑

i=1

H(Xi | X<i) = kH(X1, X2, . . . , Xn)

which completes the proof.

Corollary 5. With Dv denoting the marginal of D on {v} ∪ ♭v, we have

F(D) ≤
∑
v∈V

(
E

x∼Dv
[Sv(x)] +

1

k
H(Dv)

)
.

Proof. Set I := {{v} ∪ ♭v : v ∈ V } and apply Shearer’s lemma.

With Corollary 5 at hand, we only have to discuss local marginal distributions of D.
The following theorem gives a rough upper bound:
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Theorem 6. For any v ∈ V it holds that

E
x∼Dv

[Sv(x)] +
1

k
H(Dv) ≤ 1

k
log 2k + k − 1

k
.

Consequently, Z(2) ≤ [(2k + k − 1)/k]n/k. In particular, Z(2) < 1.4938n when k = 3.

Proof. Let us disregard any characteristic of Dv and treat it as an arbitrary, unknown
distribution κ on {v} ∪ ♭v. We shall prove the theorem for all κ.

Write Ω1 := {x ∈ [0, 1]k : xv ≥ maxx♭v} for the “scoring region”, and likewise Ω0 := {x ∈
[0, 1]k : xv < maxx♭v} for the “losing region”. Then vol(Ω1) = 1/k and vol(Ω1) = 1− 1/k.
Denote p := Px∼κ(x ∈ Ω1) = Ex∼κ[Sv(x)]. Our key observation is as follows:

Claim. If p is fixed, then H(κ) could not exceed −p log(kp) − (1 − p) log
(

k(1−p)
k−1

)
, the

entropy when κ is uniform over Ω1 and Ω0 respectively.

It has an intuitive mental picture: κ is required to place mass p on region Ω1 and the
remaining mass (1−p) on Ω0. Since p is fixed, there’s no interference between the strategies
we choose for Ω1 and Ω0. To make the situation worst, we will of course spread p uniformly
on Ω1, and (1− p) uniformly on Ω0 at the same time.

The intuition is formalised below. Let κ1(x) :=
1
p
1[x ∈ Ω1]κ(x) and κ0(x) :=

1
1−p

1[x ∈
Ω0]κ(x) be two distributions supported on Ω1 and Ω0, respectively. Then

H(κ) = −
∫
Ω1

pκ1(x) log(pκ1(x)) dx−
∫
Ω0

pκ0(x) log(pκ0(x)) dx

= pH(κ1) + (1− p)H(κ0) + hb(p)

Because p is fixed, we can maximise H(κ1) and H(κ0) independently, and the maximizer is
of course uniform distributions on both regions. The claim follows by some calculations.

Using the claim, the problem converts to a single-variate optimisation:

max
p∈[0,1]

p− 1

k

(
p log(kp) + (1− p) log

(
k(1− p)

k − 1

))
.

Let us call the target function f(p). By basic analysis,

f ′(p) = 1− 1

k

(
log(k − 1) + log p

1− p

)
,

so f(p) has a unique maximizer p∗ = 2k/(2k + k − 1). With some calculation one may
simplifies f(p∗) to 1

k
log[(2k + k − 1)/k], proving the core of the theorem. The consequence

follows directly from Corollary 5.

Remark. Our proof dismisses the properties of Dv altogether, leading to an unrealistically
large bound when k → ∞. We should not even presume that the local distribution κ could
be “assembled” into a global one. When k → ∞ then our p∗ → 1, so vertex v almost
surely scores under κ. Suppose there were a global distribution, say µ, such that µv = κ

everywhere, then Ex∼µ S(x) ≈ n. But this is ridiculous for nearly all graphs.

Actually Theorem 6 has a one-line proof by Jensen’s inequality; see chapter notes for
details. We retain the above proof for two reasons. First, information theory is an elegant
tool and also a recurring theme of this thesis. Second, as we will see shortly, we may bake
our knowledge of Dv into the argument with little modification, whereas Jensen’s inequality
falls short of such generalisation.
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Definition 2. We call a digraph vertex transitive if for all u, v ∈ V there is an automorphism
ϕ : V → V such that ϕ(u) = v.

The definition captures a strong notion of graph symmetry: any particular vertex can
be identified with any other vertex. The grid is such an example. It should be clear that
any vertex transitive digraph must be regular.

Lemma 7. For all λ and any vertex transitive digraph, xv is uniformly distributed under
Dλ for all v.

Proof. Let’s work with permutations first. Denote by Ω be the collection of all permutations
on [n]. Then the Boltzmann distribution Dλ naturally induces a distribution on Ω: for π ∈ Ω

we have P(π) ∝ 2S(π).
Now we claim that πv is uniformly distributed on [n]. That is, v does not favour

any particular position in the random ordering π. Suppose it does favour i over j, i.e.
P(πv = i) > P(πv = j), then there is some vertex u : P(πu = i) < P(πu = j) since∑

w P(πw = i) =
∑

w P(πw = j) = 1. But this is absurd, as the graph is vertex transitive
and thus u and v should be symmetric under the Boltzmann distribution. (More formally,
we may relabel G by ϕ so that ϕ(u) = v and the resulting graph G′ ∼= G. On one hand πG

u

and πG′

v are identically distributed since Dλ doesn’t care about labels; on the other hand
πG
v and πG′

v are identically distributed since G ∼= G′.)
Next we return to continuous space. By the discussion above, the marginal of xv can

be written into Dλ(xv) =
1
n

∑n
i=1 Dλ(xv | πv = i). We claim that Dλ(xv | πv = i) does not

depend on i (which implies Dλ(xv) is a constant, and it must be 1). To see the claim, write

Dλ(xv | πv = i) =
1

Z
E

x∼U

(
2S(x)

∣∣ xv, πv = i
)
.

But the condition xv is essentially “shadowed” by the condition πv = i. Regardless of
the value of xv, there will always i − 1 smaller vertices and n − i bigger vertices, and
every legal orderings are equally probable since the conditional space does not discriminate
among vertices. Therefore, the conditional expectation can be realised equivalently by
Eπ∼U (2

S(π) | πv = i), which doesn’t depend on xv.

Theorem 8. In a vertex transitive digraph, for any v ∈ V it holds that

E
x∼Dv

[Sv(x)] +
1

k
H(Dv) ≤ 1

k

∫ 1

0

log
(
(2k − 1)tk−1 + 1

)
dt =: Ak.

Consequently, Z(2) ≤ 2nAk for these digraphs. In particular, Z(2) < 1.3927n for grid.

Proof. Let us peel one more layer off our target:

E
x∼Dv

(Sv) +
1

k
H(Dv) = E

xv∼U

[
E
x♭v

(Sv | xv)

]
+

1

k
H(x♭v | xv)

=

∫ 1

0
E
x♭v

(Sv | xv = t) dt+ 1

k

∫ 1

0

H(x♭v | xv = t) dt

=

∫ 1

0

(
E
x♭v

(Sv | xv = t) +
1

k
H(x♭v | xv = t)

)
dt.

where the first line follows from Lemma 7 (noting that H(xv) = 0). Our strategy is to
maximise the inner part for each t and then integrate. The procedure is in analogue with
Theorem 6. Let Ω1 = Ω1(t) := {x♭v : t ≥ maxx♭v} and Ω0 = Ω0(t) be its complement.
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Clearly vol(Ω1) = tk−1 and vol(Ω0) = 1 − tk−1. Denote p = p(t) := P(x♭v ∈ Ω1) and
we shall obtain a single-variate optimisation. Solving it gives p∗(t) = 2ktk−1

(2k−1)tk−1+1
and

f(p∗(t)) = log
(
(2k − 1)tk−1 + 1

)
/k. The theorem is proved by integration.

Remark. It’s hard to find an analytic formula for Ak, but we can say more about its
asymptotic behaviour. For simplicity denote gk(t) := f(p∗(t)). We observe that ∀t ∈ [0, 1] :

gk(t) ≤ gk−1(t), so Ak is monotonically decreasing with k (which is better than Theorem
6). On the other hand, ∀k ≥ 2 we have gk(0) = 0, gk(1) = 1, and gk(t) is monotonically
increasing in t. Also note that if k → ∞ then gk(t) is basically zero for t < 1/2, and
is almost concave for t > 1/2 (more precisely, for t > 2O(log k/k)/2). This means gk(t) is
asymptotically above the function t 7→ (2t − 1) · 1[t > 1/2], so Ak ≥

∫ 1

1/2
(2t − 1) dt = 1/4.

This is not really satisfying because we wish the number converged to 0.

2.3 Notes and References
The variation view given by (2–1) is termed Gibbs variational principle in statistical

physics; see Section 6.9.1 in [8].
The definition of “canonical rule” (2–3) is not at all arbitrary. There are other plausible

choices such as ν(xu, xv) ∝ 2xu⊖xv = 21−(xv⊖xu), but our current choice is the best if ν only
involves xv 	 xu. More precisely, if ν writes ν(xu, xv) = f(xv 	 xu)/Z for some function f

and normalising constant Z, then (2–2) is maximised if and only ν equals (2–3). Indeed,
repeating our computation,

P(xv ≥ xu, xw) =
1

Z

∫ 1

0

y dy
∫ y

0

f(y − z) dz =
1

Z

∫ 1

0

y dy
∫ y

0

f(t) dt

=
1

Z

∫ 1

0

f(t) dt
∫ 1

t

y dy =
1

Z

∫ 1

0

1− t2

2
f(t) dt,

H(ν) = logZ − 1

Z
E

xu,xv∼U
[f(xv 	 xu) log f(xv 	 xu)]

= logZ − 1

Z
E

t∼U
[f(t) log f(t)] = logZ − 1

Z

∫ 1

0

f(t) log f(t) dt.

Since Z = Exu,xv∼U [f(xv 	 xu)] = Et∼U [f(t)], we see that f(t)/Z is a density function.
Keep it in mind and adds up the equations, we eventually find

P(xv ≥ xu, xw) +H(ν) =

∫ 1

0

f(t)

Z
log 2(1−t2)/2

f(t)/Z
dt.

But this can be interpreted as a negative KL divergence with constant shift. To be explicit,
introduce normalising constant Z̃ := Et∼U (2

(1−t2)/2). Then the right-hand side equals
log Z̃ − KL(f/Z‖2(1−t2)/2/Z̃), which is maximised when f(t) = 2(1−t2)/2Z/Z̃.

Our last note is an alternative proof of Theorem 6 by Jensen’s inequality:

2k Ex∼Dv [Sv(x)]+H(Dv) = 2Ex∼Dv [kSv(x)−log Dv(x)]

≤ E
x∼Dv

(
2kSv(x)−log Dv(x)

)
= E

x∼Dv

(
2kSv(x)

1

Dv(x)

)
= E

x∼U

(
2kSv(x)

)
=

1

k
2k +

(
1− 1

k

)
20 =

2k + k − 1

k
.
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Chapter 3 Combinatorial Embedding and
Spreading

This chapter accommodates two combinatorial ideas which assist us sharpening previous
results. The first idea, gadget embedding, specialises in lower bounds. It packs tree-like
structure into graph to reveal richer information of the model. The second idea, weight
spreading, shows its power in upper bound contexts. It skillfully pairs the states and
provides us with valuable insights into Dλ. These ideas are motivated by considerations
independent of the variational view in Chapter 2.

3.1 Gadget Embedding
3.1.1 Motivation

We have seen in Chapter 1 an easy lower bound Ex(2
S) ≥ 2Ex(S) = 2n/k by Jensen’s

inequality. Chapter 2 took a very different route for lower bounds. Now let us step back
and ask: Is it possible to refine Jensen’s inequality directly?

Ex(2
S) ≥ 2Ex(S) is tight if and only if S(x) is a constant. More generally, it is “near

tight” if S(x) is concentrated. What if we artificially enforce S(x) to concentrate more than
usual? Namely, if we appropriately define some random variable y, then the conditional
distribution of S(x) under y may be more concentrated. Therefore, when we write

E
x
(2S) = E

y

(
E(2S | y)

)
≥ E

y

(
2E(S|y)) = E

y

(
2
∑

v E(Sv|y)
)

(3–1)

we expect the Jensen’s inequality here performs better.
The main technical challenge is choosing a nice conditioning variable y. It’s again a

game about balance. To one extreme, one may choose y := x so that (S | y) is a perfect
constant. However, evaluating Ey(·) would be as tough as before. Below we consider some
feasible choices of y, ordered by increasing complexity, in the context of two-dimensional
grid.

3.1.2 Horizontal embedding
Recall that the modular difference a	 b is the clockwise distance from b to a on a circle

of circumference 1. For each horizontal edge uv (except the last column) in the grid we
define yv := xv 	 xu. Collect them all in a vector y.

Lemma 9. For the y defined above,

• The variables yv’s are uniformly and independently distributed on [0, 1].
• For any particular v ∈ V , the variables y and xv are independent.

Proof. As we saw in Chapter 2, a 	 b is uniform on [0, 1] so long as a or b is uniform on
[0, 1]. So by definition, the yv’s must be uniform. To show independence, we distinguish
two cases. If v1 and v2 are not adjacent horizontally, then by definition yv1 and yv2 must
be independent. If they do touch horizontally, say v1 ∈ ♭v2, then conditioning on yv2 (i.e.
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xv2 	 xv1
) shall not bias yv1 = xv1 	 xu, as we still have a “fresh” uniform variable xu. A

similar argument extends to any subset of yv’s.
Finally, conditioned on any particular xv, the distribution of y remain the same for a

similar reason.

We provide an alternative argument next since it illustrates a technique that we use
frequently and implicitly.

Alternative proof. Let us pick one vertex from each row and call them U . Consider the fol-
lowing probability space: Sample xU ∈ [0, 1]

√
n uniformly. Then sample y uniformly which

represents the modular differences for horizontal edges. Finally, based on the knowledge of
xU and y, fill in the correct values of xV \U (which are uniquely determined).

It is easy to see that x generated in this way are uniformly distributed on [0, 1]n. There-
fore, the probability space is equivalent to the original one. But now by construction,
y is uniformly distributed and, furthermore, independent of xU (so we actually proved
more).

Armed with these properties, we return to (3–1) and evaluate E(Sv | y) in the exponent.
Call v’s left neighbour u and its lower neighbour w, then

E(Sv | y) = E
xv|y

E(Sv | y, xv) = E
xv∼U

E(Sv | y, xv) = E
xv∼U

P(xu, xw ≤ xv | y, xv)

where the second step uses the independence of xv and y. Conditioned on (y, xv), the value
xu = xv 	 yv is determined, and the value xw is dangling independently. Therefore,

P(xu, xw ≤ xv | y, xv) = P(xv 	 yv ≤ xv | y, xv)P(xw ≤ xv | y, xv)

= 1[yv ≤ xv] · xv

and thus
E(Sv | y) =

∫ 1

0

1[yv ≤ xv] · xv dxv =

∫ 1

yv

xv dxv =
1− y2v

2
.

Note that only the local term yv takes effect though we condition on the entire y.
Finally, putting together with (3–1), we deduce

E
x
(2S) ≥ E

y

(
2
∑

v(1−y2
v)/2
)

=
∏
v

E
yv

(
2(1−y2

v)/2
)

=

(∫ 1

0

2(1−t2)/2 dt
)n−

√
n

> 1.2665n−
√
n,

where the second line uses independence of yv’s. The result matches the one we derived
from canonical Markovian rule in Chapter 2, but here we have saved a significant amount
of calculations.

3.1.3 Tree embedding
The horizontal embedding trick hints about a generalisation:

Can we choose a subgraph T in the grid such that, when revealing modular
differences for all e ∈ T , our previous argument still gets through?
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We have just seen that T could be taken as
√
n parallel horizontal paths. The bottleneck

for this choice lies in the “dangling” lower neighbour w. Since horizontal edges reveal no
information vertically, xw is out of control and reduce the concentration of Sv. To overcome
the obstacle, we hope to include vertical edges in T as well.

Not all choices of T are legal. Cyclic subgraphs (in the undirected sense) are crossed
out immediately, since a cycle would deprive the edges of independence. For instance,
suppose ab, ac, bd, cd constitute a cycle, then we have the identity (xd 	 xb) ⊕ (xb 	 xa) =

(xd	xc)⊕ (xc	xa) where ⊕ is naturally the inverse operation of 	. Clearly the four edges
(more precisely, the corresponding modular differences) cannot be independent.

But even trees/forests could be illegal. Suppose there is a long path v1, . . . , vr ∈ T such
that vr ∈ ♭v1 in the grid (not in T , of course), then Sv will implicitly depend on all edges
on this path. In this case, E(Svi | y) tangles with each other for all 1 ≤ i ≤ r, making it
impossible to factor the expectation in the final step.

Figure 3–1 shows a legal T . It is a forest consisting of trees running in diagonal direction.
We may replay Lemma 9 easily for this T , so we jump directly to calculations.

ab

cv

u

w

Figure 3–1 Tree embedding example. Some vertices on the grid are not shown for clarity.

There are only three types of vertices, labelled a, b and c respectively in the figure. With
little modification, we could derive

E(Sa | y) = 1− max(yba, yca)

E(Sb | y) =
1− y2vb

2

E(Sc | y) =
1− (yvb ⊕ yba 	 yca)

2

2
.

The last one is a bit tricky. Conditioned on (y, xc), value xw is dangling, but xv is determined
through a path of length three! Therefore, we actually implicitly reveal an edge yvc, which
equals yvb ⊕ yba 	 yca.

Summing these up, we get

E(Sa + Sb + Sb | y) = 2− max(yba, yca)−
y2vb + (yvb ⊕ yba 	 yca)

2

2

=: f(yba, yca, yvb).

The point is, for this vertex group (a, b, c), only the conditions yba, yca and yvb take effect.
Moreover, the conditions on which different groups depend are disjoint. Therefore, we could
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again exploit independence of y, now at the scale of groups:

E
x
(2S) ≥ E

y

exp2

∑
(a,b,c)

f(yba, yca, yvb)




=
∏

(a,b,c)

E (exp2 {f(yba, yca, yvb)})

=

(∫ 1

0

∫ 1

0

∫ 1

0

2f(r,s,t) dr ds dt
)(n−O(

√
n))/3

where the exponent counts the number of vertex groups. We subtract an O(
√
n) because

some boundary vertices might not be covered by T . Using numerical computation, it yields
the sharpest lower bound so far:

Theorem 10. Z(2) > 1.2702n−O(
√
n) for the grid.

As is clear from our derivation, type a vertices are where the improvement took place.
Through careful construction, our current T contains denser information than horizontal
paths.

3.1.4 Design issues
It’s time to briefly address the design issues concerning gadget embedding. Above all

we remind the reader that, given unlimited computational time, one could always choose
T := G and handle the task by computers. People name it as hand-waving. So we’d better
limit our computational power to d-dimensional numerical integration at most, say.

Fix a subgraph T . For vertex v ∈ V , define its dependency list LT (v) to contain all
edges in T that (i) points to v; or (ii) lies on a path which connects a pair in ♭v. Here
♭v is taken in the original graph. Let LT := {LT (v) : v ∈ T}. We say two lists in LT

are connected if they intersect, and define connected components of LT in the obvious way.
Under this formulation, the story is all about:

Design a forest T such that every connected component in LT contains at most
d edges.

This in principle gives an out-of-the-box lower bound method for general k, though with
no performance guarantee.

3.2 Markovian Sampling Meets Embedding
At this point, we see a chance of consolidating two threads into one. The Markovian

scheme in Chapter 2 sampled values horizontally, so vertical information were lost. Can
we imitate the gadget embedding trick and do Markovian sampling on forests? Since we
already have a stronger rule ν∗ than modular difference, we expect that such scheme when
armed with ν∗ would produce superior lower bounds.

However, there is a twist in defining Markov chains on forests. Surely, one could first
sample the roots and then work his way down to leaves by pairwise sampling via ν∗. But
this leads to extremely complicated, or even undesirable, marginals at some pairs. Take the
forest in Figure 3–1 as example, the marginal distribution of (xc, xv) would be overly tiring
to write. Furthermore, it does not resemble ν∗ at all and hardly reveals information about
Sc. The overall effect is not very satisfactory, giving only a lower bound of about 1.2694n.
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· · · · · ·

· · · · · ·

a b

c d

a b

c d

Figure 3–2 A snake and its friends.

Rather, we develop a technique that ensures correct pair marginals (at some price). Let
δ(x, y) := ν∗(x, y) − 1. Since ν∗ is doubly stochastic, we have ∀x :

∫ 1

0
δ(x, y) dy = 0 and

∀x :
∫ 1

0
δ(x, y) dy = 0.

Call the gadget on the left in Figure 3–2 a snake. As shown in the right part, we cascade
snakes horizontally into chunks and embed them in the grid. Again, boundaries are not
covered. Fix a small number ϵ > 0, we define a distribution on snake (a, b, c, d) by

ν(xa, xb, xc, xd) := 1 + ϵ · (δ(xa, xb) + δ(xc, xb) + δ(xc, xd))

and extend it to a distribution on the entire graph:

ν(x) :=
∏

(a,b,c,d)

ν(xa, xb, xc, xd)

where the product runs over all snakes. Note if ϵ < 1
2 ln 2

then ν is positive. The lemma
below justifies why it is a legal extension.

Lemma 11. ν(x) is a legal distribution. Moreover, for any embedded snake (a, b, c, d), the
marginal of (xa, xb, xc, xd) is indeed ν(xa, xb, xc, xd), i.e. the distribution on snake before
extension. This also justifies our usage of symbol ν for the global distribution.

Proof. For edge e = uv we abbreviate δe := δ(xu, xv). Expanding the definition of ν(x)

yields
ν(x) = 1 + ϵ

∑
e

δe + ϵ2
∑
e

∑
e′

δeδe′ + · · ·

where e, e′, etc. pick edges from distinct snakes. In other words, each term (e.g. δeδe′) can
be regarded as a subgraph that contains at most one edge from each snake. Note that such
subgraphs never contain a cycle, by the design of our embedding.

To see ν(x) is a legal distribution, we claim that
∫
ν(x) dx = 1. Let us do the integration

for each term separately. The integration of the unity term gives 1 certainly. For all others,
say the term corresponding to subgraph T , we may always start integrating at a leaf of T ,
which returns a zero.

The argument for marginal on a snake (a, b, c, d) is similar. We observe that, except for
terms 1, δab, δcb and δcd, all other terms must contain an “exposed” vertex v 6∈ {a, b, c, d}.
Therefore, when we condition on (xa, xb, xc, xd), we may always start integrating at v and
the term vanishes. Only 1 + ϵ(δab + δcb + δcd) survives, as promised.

As a corollary, we see that the marginal of (xa, xb) is 1+ ϵδab, and similarly for (xc, xb),
(xc, xd). If we could take ϵ = 1, then these pair marginals are guaranteed the optimal rule
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ν∗. Unfortunately, ϵ cannot be 1, otherwise ν becomes negative somewhere. Nevertheless,
for ϵ = 0.7, say, the pair distribution still nicely mimics ν∗.

Recall from last chapter the functional F(ν) := Ex∼ν(S)+H(ν). By routine calculation
and ignoring boundaries,

H(ν) =
∑

(a,b,c,d)

H(ν(xa, xb, xc, xd)) =
n

2
H(ν(xa, xb, xc, xd)). (3–2)

Using the fact that (1 + t) ln(1 + t) ≤ t+ t2

2
− t3

6
+ t4

3
and setting t := ϵ(δab + δcb + δcd),

−H(ν(xa, xb, xc, xd)) =
1

ln 2
E

xa,xb,xc,xd∼U
((1 + t) ln(1 + t))

≤ 1

ln 2
E

xa,xb,xc,xd∼U

(
t+

t2

2
− t3

6
+

t4

3

)
=

1

ln 2
E

xa,xb,xc,xd∼U

(
t2

2
− t3

6
+

t4

3

)
.

An impatient reader may evaluate it via numerical computation. Here we perform one
more step of simplification, taking E(t4) as an example:

E(t4) = ϵ4 E
(
(δab + δcb + δcd)

4
)
.

Once again, expanding the product will give us several terms, each corresponding to a
multiset of four edges in snake (a, b, c, d). If a term contains exposed vertices, then it
must vanish. The only surviving terms are 6(δabδcb)

2, 6(δcbδcd)
2, 6(δabδcd)

2 (choosing pairs
twice) and δ4ab, δ

4
bc, δ

4
cd (choosing an edge four times). Note that some terms give identical

expectations. After cleaning up, we obtain

E(t4) = ϵ4
(
3E(δ4ab) + 6

[
E(δ2ab)

]2
+ 6E

[
(δabδcb)

2
]
+ 6E

[
(δcbδcd)

2
])

.

Similarly,
E(t3) = 3ϵ3 E(δ3ab), E(t2) = 3ϵ2 E(δ2ab).

Putting all these into (3–2), we have

H(ν) ≥ −nϵ2

4 ln 2

{
3E(δ2ab)− ϵE(δ3ab)+

2ϵ2
[
E(δ4ab) + 2

[
E(δ2ab)

]2
+ 2E

[
(δabδcb)

2
]
+ 2E

[
(δcbδcd)

2
]]}

. (3–3)

The calculation of Ex∼ν(S) is much easier. Observe that there are only two types of
vertices, namely b and c, in the embedding. We may find

E(Sb) =
1

3
+ 2ϵ

∫ 1

0

y dy
∫ y

0

δ(x, y) dx =
1

3
+

ϵ ln 2

18

E(Sc) =
1

3
+ ϵ

∫ 1

0

y dy
∫ y

0

δ(x, y) dx =
1

3
+

ϵ ln 2

36
,

which implies

E(S) =
(
1

3
+

ϵ ln 2

24

)
n (3–4)

Finally, we take ϵ := 0.7213 < 1
2 ln 2

and evaluate (3–3) (3–4). The numbers are greater
than −0.008032n and 0.354166n, respectively. Therefore, F(ν) > 0.346134n and the theo-
rem below follows from the variational view (2–1):

Theorem 12. Z(2) > 1.2711n for the grid.
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3.3 Weight Spreading
The weight spreading idea is motivated by a well-known relation in statistical physics.

Definition 3. For Dλ on a specific digraph we define its occupancy as α(λ) :=
EDλ

(S)

n
=

1
n

∑
v∈V EDλ

(Sv), that is the expected score per vertex under Dλ. Note that for vertex
transitive graphs, α(λ) equals the scoring probability of any vertex.
Lemma 13. lnZ(λ) = n

∫ λ

1
α(λ)
λ

dλ.
Proof. By definition,

n
α(λ)

λ
=

∫
[0,1]n

S(x)
λS(x)−1

Z(λ)
dx

=
1

Z(λ)

∫
[0,1]n

d
dλλ

S(x) dx

=
1

Z(λ)

d
dλ

∫
[0,1]n

λS(x) dx =
Z ′(λ)

Z(λ)
= (lnZ(λ))′.

The exchange in the third line is valid because we may partition the space [0, 1]n into n!

regions according to the ordering induced by x. Points inside each region has identical
scores, so

∫
[0,1]n

λS(x) dx =
∑

π
λS(π)

n!
and the exchange is justified. After all, our model is

discrete at its core. The lemma follows by integrating from 1 to λ and noting Z(1) = 1.

Based on this relation, we turn to upper bound α(λ) for all λ ∈ [1, 2]. To this end, we
pair a scoring state with a non-scoring state and compare their weights.
Theorem 14. For any λ ≥ 1 and vertex v ∈ V we have

E
Dλ

(Sv) ≤
1

1 + (k − 1)/λk−1
.

As a consequence,

Z(λ) ≤
(
λk−1 + k − 1

k

)n/(k−1)

.

Proof. During the proof we will solely work in Dλ, so we drop all subscripts for brevity.
Denote Ω1 := {x ∈ [0, 1]n : xv ≥ maxx♭v} and Ω0 := [0, 1]n \ Ω1. Then E(Sv) = P(x ∈ Ω1).

For each u ∈ ♭v we define a mapping ϕu : Ω1 → Ω0 as follows. Given state x ∈ Ω1 as
input, ϕu outputs the same state but with xv and xu swapped. The output indeed lies in
Ω0 since vertex v now has a smaller value than its child u.

Note that the images of these mappings partition the set Ω0. To see this more clearly,
write out Im(ϕu) =

{
x ∈ [0, 1]n : xu ≥ maxx♭v∪{v}

}
and observe. The Im(ϕu)’s are disjoint

and their union equals Ω0. Figure 3–3 illustrates the idea.
Next we compare the scores before and after applying ϕu. After its application, vertex

v surely loses score. The other k−2 parents of u might also lose scores since u gets a bigger
assignment. Yet u itself might benefit. Finally, ♯v could as well gain scores. In the worst
case, we shall lose k − 1 scores. Writing this formally, we have S(ϕu(x)) ≥ S(x)− (k − 1).
Therefore, Dλ(ϕu(x)) ≥ Dλ(x)/λ

k−1. Now we have

P(x ∈ Ω1) =

∫
Ω1

Dλ(x) dx

≤ λk−1

∫
Ω1

Dλ(ϕu(x)) dx

= λk−1

∫
Im(ϕu)

Dλ(y) dy = λk−1 P(x ∈ Im(ϕu))
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v

u u′

[v = {u, u′}
Ω0

1

3 2

Im(φu)
2

3 1

2

1 3

Im(φu′)
1

2 3

3

1 2

Ω1 3

2 1

φu

φu′

Figure 3–3 Sets and mappings in the proof when k = 3. The orange labels indicate the
ordering induced by x in the neighbourhood.

where the last line comes from a change of variable y := ϕu(x). (The Jacobian is clearly 1

since ϕu behaves just like variable renaming...) Summing the inequalities for all u ∈ ♭v, we
arrive at

(k − 1) · P(x ∈ Ω1) ≤ λk−1 · P(x ∈ Ω0).

But P(x ∈ Ω1) + P(x ∈ Ω0) = 1, so we derive at last

P(x ∈ Ω1) ≤
1

1 + (k − 1)/λk−1
.

The rest of the theorem follows from Lemma 13 by noting that the primitive function
of 1/λ

1+(k−1)/λk−1 is exactly 1
k−1

ln(λk−1 + k − 1).

Remark. Our proof intentionally uses continuous space to prepare the readers for the later
lemma. But the argument, at its core, is pretty discrete and combinatorial.

The weight spreading idea reveals only crude information of Dλ. Nevertheless, it provides
a valuable prior knowledge of occupancy. For example, in the proof of Theorem 8 in the
last chapter, we could use weight spreading to restrict the range of parameter p = p(t).
Below we sketch the key lemma.
Lemma 15. Assume k = 3 and fix t ∈ (0, 1). For any v we have

p(t) := E
D
(Sv | xv = t) ≤ 5t2 + 2t+ 1

8t2
.

Proof. Suppose ♭v = {u,w}. Consider the spaces A := [0, t]2, B := [0, t] × [t, 1], B′ :=

[t, 1] × [0, t] and C := [1, t] × [1, t]. It’s easy to “stretch” the rectangle A into B, B′ or C.
Take the first as example: (xu, xw) ∈ A is mapped to ϕAB(xu, xw) := (xu,

1−t
t
xw + t) ∈ B.

The other two mappings are defined similarly.
Now we may compare weight of (xu, xw) ∈ A with ϕAB(xu, xw), ϕAB′(xu, xw), and

ϕAC(xu, xw), respectively. And it is not hard to see

Dλ(xu, xw) ≤ λ2Dλ(ϕAB(xu, xw))

Dλ(xu, xw) ≤ λ2Dλ(ϕAB′(xu, xw))

Dλ(xu, xw) ≤ λ3Dλ(ϕAC(xu, xw)),

which implies

P((xu, xw) ∈ A) ≤ λ2 t

1− t
P((xu, xw) ∈ B)

P((xu, xw) ∈ A) ≤ λ2 t

1− t
P((xu, xw) ∈ B′)

P((xu, xw) ∈ A) ≤ λ3

(
t

1− t

)2

P((xu, xw) ∈ C).
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where we implicitly assume the probability is conditioned on xv = t. Therefore, at λ = 2,

P(B) + P(B′) + P(C) ≥ (1− t)(1 + 3t)

8t2
P(A).

But the left-hand side is just 1− P(A). Moving terms around establishes the lemma.

Baking this prior knowledge into the optimisation of Theorem 8, one may improve the
upper bound to 1.3852n for vertex transitive graphs when k = 3. We leave the details
to the readers. The weakness of the spreading argument lies in its assumption of worst
scenario when relating S(ϕ(x)) with S(x). Conceivably, for the vast majority of scoring
states, applying ϕ will not cause a radical score loss. But it seems challenging to take this
aspect into account.

3.4 Notes and References
Our notion of occupancy originates from statistical physics. It is an analogue to the

so-called mean magnetization in the hard-core model. Connection between occupancy and
partition function (Lemma 13) is a well-known fact, which more or less reflects the sig-
nificance of partition functions. In fact, most values of physical interest (e.g. pressure,
temperature, etc) can be derived from the partition function. For an excellent introductory
text to statistical physics, we recommend the lecture notes by David Tong [17]. An in-depth
and rigorous treatment can be found in [8].

Davies, Jenssen, Perkins and Roberts [6, 5] developed a linear-programming approach to
upper bound the occupancy. Briefly speaking, the method (i) defines some random variable
Y (called “boundary”) that shields a local region and establishes spatial independence;
(ii) expresses the occupancy α in two ways as E(f(Y )) and E(g(Y )); (iii) uses a linear
programme to model the distribution of Y and the constraint E(f(Y )) = E(g(Y )). It works
well in settings that involve finite number of spins and hard constraints. However, it exhibits
fundamental limitations in our context. Firstly, it is difficult to encode the boundary
succinctly as our model does not exhibit hard constraints. Secondly, the method allows an
adversary to bias the distribution of Y arbitrarily, even down to a one-point distribution.
Such dramatic distributions are realistic in hard-core model etc. but unrealistic in our
model.
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Chapter 4 Upper Bounds via Bipartite
Relaxation

In our model, every v ∈ G is pulled by two conflicting forces. A higher value of xv

benefits Sv but unfortunately harms S♯v. This chapter isolates these effects by splitting v

into two copies. It leads to a bipartite model in which the interactions are more manageable
and even exactly solvable in some case. Throughout the chapter we denote d := k − 1 to
avoid clutter.

4.1 Bipartite Relaxation
Let us associate G = (V,E) with a bipartite graph G′ := (A ∪ B,E′), where A = {v− :

v ∈ V }, B = {v+ : v ∈ V } and E′ := {u−v+ : uv ∈ E}. In words, we split each vertex v

into two copies, v− and v+. The ‘−’ copy radiates edges and the ‘+’ copy absorbs them; see
Figure 4–1. The edge orientation does not really matter, so we are flexible to interpret G′ as
either directed or undirected. Clearly G′ has 2n vertices and is d-regular in the undirected
sense.

split each v

into v− ∈ A
and v+ ∈ B

Figure 4–1 Illustration of vertex splitting.

We may define a model on G′ just like before: Sample x ∈ [0, 1]2n uniformly and collect
score Sb(x) := 1[xb ≥ maxx♭b] for each b ∈ B. The total score writes S(x) :=

∑
b∈B Sb(x)

and we inquire about E(2S). We refer to it as the bipartite model. The definitions are
motivated by the apparent advantage that, in a bipartite model, interactions flow one-way
from A to B without feedback.

The following correlation inequality is our main tool in linking the bipartite model with
our old model.

Lemma 16 (Chebyshev’s sum inequality). For any monotonically increasing functions
f, g : R → R and distribution µ on R, we have

E
x∼µ

[f(x)] E
x∼µ

[g(x)] ≤ E
x∼µ

[f(x)g(x)]

whenever they exist. The inequality flips sign if f is increasing and g is decreasing, or vice
versa.

Proof. Since both f and g are monotonically increasing, (f(x) − f(y)) · (g(x) − g(y)) ≥ 0
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for all x, y. Therefore, if we sample x ∼ µ, y ∼ µ independently, then

0 ≤ E
x,y

[
(f(x)− f(y)) · (g(x)− g(y))

]
= E

x,y
[f(x)g(x)]− E

x,y
[f(x)g(y)]− E

x,y
[f(y)g(x)] + E

x,y
[f(y)g(y)]

= 2E
x
[f(x)g(x)]− 2E

x
[f(x)]E

x
[g(x)].

The last line follows from independence of x and y. Moving terms and dividing the inequality
by 2 proves the lemma.

Lemma 17. The bipartite model is an upper bound for the old model:

E
G
(2S) ≤ E

G′
(2S).

Proof. We may implement the splits sequentially, one vertex at a time. In an intermediate
digraph, we again sample x uniformly for all vertices, and count scores for all but ‘−’
vertices. Suppose, at some arbitrary step, we are dealing with G1 and splitting vertex v

into v− and v+. This results in digraph G2. To establish the lemma, it suffices to show

E
G1

(
2S
)
≤ E

G2

(
2S
)
. (4–1)

Claim. Fix any partial assignment y ∈ [0, 1]V (G1)\{v}, it holds that EG1

(
2S | y

)
≤

EG2

(
2S | y

)
. Consequently, (4–1) follows by taking expectation Ey∼U on both sides.

Under partial assignment y, all scores are fixed except Sv in G1, Sv+ in G2, and S♯v in
both. Here we agree that ♯v is defined in the context of G1. These undetermined scores
depend on the deferred sampling of xv (in G1) and xv+ , xv− (in G2). Hence,

E
G1

(
2S | y

)
= c · E

xv

[f(xv)g(xv)], E
G2

(
2S | y

)
= c · E

xv+

[f(xv+)] E
xv−

[g(xv−)]

where c packs the “fixed scores”, f accounts of 2Sv (in G1) or 2Sv+ (in G2), and g accounts
of 2S♯v . It’s important to note that both models share the same c, f, g under condition
y. Now observe that f is increasing and g is decreasing. Applying Lemma 16 gives our
claim.

4.2 An Entropy Upper Bound
Retaining merely “one-way” correlation from A to B, the bipartite model is much simpler

to analyse. In fact, we are able to prove a tight upper bound by an entropy argument.

Theorem 18. EG′(2S) is maximised when G′ = n
d
Kd,d, the disjoint union of n

d
many

complete d-regular bipartite graphs. In addition, EG′(2S) < (ed)n/d = 2n·O(log k/k).

Proof. We discretise the interval [0, 1] into [N ] for some large number N ∈ N, and sample
x from [N ]2n rather than from [0, 1]2n. The score calculation remains unchanged. Since the
discrete scheme is coarser and gives scores more generously, there is no problem for upper
bound purpose.

For state x ∈ [N ]2n, we abuse notation and redefine S(x) := (Sb(x))b∈B as a binary
vector indicating the local scores. Let Ω := {(x,R) ∈ [N ]2n × {0, 1}n : R ≤ S(x)}. In
words, R has the freedom of “downgrading” scoring vertices. Then we may write

E
G′

(
2|S(x)|) = ∑

x∈[N ]2n

1

N2n
· 2|S(x)| =

1

N2n

∑
x∈[N ]2n

∑
R≤S(x)

1 =
|Ω|
N2n

.
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Consider a probability space where we sample (x,R) uniformly from Ω; beware that x

is not uniform in this space. Then H(x,R) = log |Ω| and thus logEG′(2|S(x)|) = H(x,R)−
2n logN . Hence it suffices to bound the entropy in our new space. By the chain rule,

H(x,R) = H(xA) +H(xB, R | xA) (4–2)

and we bound them separately. Define a random variable Mb := maxx♭b for each b ∈ B.
The key intuition is: If Mb is small then x♭b shall concentrate at the bottom half of [N ] and
H(xA) is lowered; if Mb is large then Rb would mostly lose freedom and H(xB, R | xA) is
lowered. Either way, H(x,R) is constrained from above. The argument below formalises
our intuition. Let µ(·) be the distribution of Mb, where we have suppressed the dependence
on b. Then

H(xA) ≤
1

d

∑
b∈B

H(x♭b)

=
1

d

∑
b∈B

H(Mb) +H(x♭b | Mb)

=
1

d

∑
b∈B

(
N∑

m=1

µ(m) log 1

µ(m)
+

N∑
m=1

µ(m)H(x♭b | Mb = m)

)

≤ 1

d

∑
b∈B

N∑
m=1

µ(m) log md − (m− 1)d

µ(m)
(4–3)

where the first line follows from Lemma 4 because each a ∈ A is covered d times. The last
line follows from the fact that, given Mb = m, x♭b is distributed over the set [m]d− [m− 1]d

(either uniformly or not; we don’t really know).
For the second half, we have

H(xB, R | xA) ≤
∑
b∈B

H(xb, Rb | xA)

=
∑
b∈B

H(xb, Rb | Mb)

=
∑
b∈B

N∑
m=1

µ(m)H(xb, Rb | Mb = m)

=
∑
b∈B

N∑
m=1

µ(m) log(2N + 1−m) (4–4)

where the first line is due to subadditivity of entropy. The last line is justified by observing
that, with the knowledge Mb = m, the pair (xb, Rb) is uniformly distributed on the set
({1, . . . ,m− 1} × {0}) ∪ ({m, . . . , N} × {0, 1}). (But as we care about upper bounds only,
the uniformity is not a must. Knowing the support set is sufficient and we could write ‘≤’
in place of ‘=’.)

Recall that logEG′
(
2|S

x|) = H(x,R) − 2n logN . Combining it with (4–2), (4–3) and
(4–4) yields

log E
G′

(
2|S

x|) ≤ 1

d

∑
b∈B

N∑
m=1

µ(m) log (md − (m− 1)d)(2N + 1−m)d

N2d · µ(m)
.

We are left with a familiar situation: the inner summation is just a negative KL diver-
gence with constant shift. Repeating our argument in the notes of Chapter 2, the inner
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summation rewrites into log Z̃ − KL(µ‖ν), where

ν(m) :=
(md − (m− 1)d)(2N + 1−m)d

N2d · Z̃
and

Z̃ :=
N∑

m=1

(md − (m− 1)d)(2N + 1−m)d

N2d
. (4–5)

is its normalising constant. But KL(µ‖ν) ≥ 0, so

E
G′

(
2|S

x|) ≤ Z̃n/d. (4–6)

Before evaluating Z̃, let us make some observations. Suppose our bipartite graph is
Kd,d, then the argument above gives away nothing:

• The first inequality in (4–3) is tight because, for each b ∈ B, x♭b is just xA.
• The last inequality in (4–3) is tight since xA is uniform conditioned on xA = m. (Every

b ∈ B cares about m only.)
• The inequality in (4–4) is tight since {Rb}b∈B are independent conditioned on xA.
• The KL divergence achieves 0 since µ = ν for every b ∈ B. That is, the distribution of

maxx♭b = maxxA is given by ν indeed. This may be verified by counting the number
of (x,R) ∈ Ω conditioned on maxxA = m.

The same observation clearly holds for n
d
Kd,d as well, since the disjoint components are

independent. So the inequality in (4–6) is tight when G′ = n
d
Kd,d, proving the first part of

the theorem.
However, it is difficult to evaluate Z̃ directly from its definition (4–5). We will see a

workaround in the next section, but here we resort to a rough, yet asymptotically good,
upper bound for Z̃.

Since our argument holds for any N , we could choose N := d for convenience in (4–5).
Dropping the (m− 1)d from numerator gives

Z̃ ≤
d∑

m=1

(
m(2d+ 1−m)

d2

)d

.

But now the numerator is monotonically increasing when 1 ≤ m ≤ d. Hence,

Z̃ ≤ d ·
(
d(d+ 1)

d2

)d

< ed,

proving the second part of the theorem.

4.3 Exact Solution to n
dKd,d

In this section we solve the bipartite model on n
d
Kd,d exactly and explicitly. It has two

direct consequences: (i) provides a tight bound in Theorem 18, much sharper than (ed)n/d;
(ii) tells us the actual value of Z̃ as N → ∞. Note that we shall work in our usual uniform
space on [0, 1]2n rather than on Ω.

Theorem 19. When G′ = n
d
Kd,d we have

E
G′

(
2S
)
=

(
1

2
+

[(d− 1)!]2

(2d− 1)!
· d · 4d−1

)n/d

∼

(
1 +

√
πd

2

)n/d

.
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Proof. Since the graph is a disjoint union, its components are independent and we could
focus on one. We henceforth assume n = d and the bipartite graph being exactly Kd,d.

Denote M := maxxA, i.e. the maximum value on left hand side. Let us figure out its
distribution analytically. With F (t) notating its cumulative probability function and f(t)

its density function, we have

F (t) = P(M < t) = P(∀a ∈ A, xa < t) = td

since every xa are distributed uniformly and independently. Differentiating, we derive

f(t) = d · td−1.

Next we observe that the {Sb}b∈B are independent conditioned on M . To see this, simply
note that Sb = 1[xb > M ] depends on xb and M only, and, xb are by definition independent.
Therefore,

E
(
2S | M

)
=
∏
b∈B

E
(
2Sb | M

)
= (2− t)d.

Taking expectation over M ,

E
(
2S
)
= E

(
E(2S | M)

)
=

∫ 1

0

(2− t)d · d · td−1 dt

= d

∫ 1

0

(
2t− t2

)d−1 · (2− t) dt

= d

∫ 1

0

(
2t− t2

)d−1 · (1− t) dt+ d

∫ 1

0

(
2t− t2

)d−1 dt

=: I1 + I2.

But
I1 =

1

2

[
(2t− t2)d

]1
0
=

1

2
and

I2 = d

∫ π/2

0

cos2d−1 θ dθ (cos2 θ = 2t− t2)

= d · (2d− 2)!!

(2d− 1)!!
=

[(d− 1)!]2

(2d− 1)!
· d · 4d−1. (Wallis’ integral)

So we obtain
E
(
2S
)
=

1

2
+

[(d− 1)!]2

(2d− 1)!
· d · 4d−1.

Using Stirling’s approximation j! ∼
√
2πj(j/e)j , the quantity is asymptotically

1

2
+
√
2π · e · d(d− 1)

(2d− 1)3/2

(
2d− 2

2d− 1

)2d−2

∼ 1 +
√
πd

2
.

Raising the above results to n
d
Kd,d completes the proof.

Corollary 20.

E
G′

(
2S
)
≤
(
1

2
+

[(d− 1)!]2

(2d− 1)!
· d · 4d−1

)n/d

.

Corollary 21.
lim

N→∞
Z̃ =

1

2
+

[(d− 1)!]2

(2d− 1)!
· d · 4d−1.
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4.4 Returning to the Old Model
Theorem 22. For any d-regular digraph G,

Z(2) ≤
(
1

2
+

[(d− 1)!]2

(2d− 1)!
· d · 4d−1

)n/d

= 2n·Θ(log k/k).

In particular, Z(2) ≤ (11/6)n/2 < 1.3541n when k = d+ 1 = 3.

Proof. A direct consequence of Lemma 17 and Corollary 20.

Our discussion so far works by relaxing digraph G into a bipartite graph G′. Below
we briefly discuss the converse procedure. Actually, G′ is not uniquely decodable into its
original form if we disregard vertex labels. For example, the bipartite graph n

d
Kd,d could

result from

• a disjoint union of n/d many directed complete graphs Kd with self-loops at every
vertex;

• a graph consisting of n/d layers L1, . . . , Ln/d, with d vertices each, such that (Li, Li+1)

is a complete bipartite graph for all i. The edges direct from left to right and wrap
around at boundary. (Figure 4–2)

• ...

......

Figure 4–2 The layered graph when d = 3. Ignoring scores in odd layers is equivalent to
the model on n

2d
Kd,d.

Interestingly, the possibilities have disparate natures. The former contains extremely
repelling vertices: only the biggest vertex scores in each Kd, and thus E(2S) = 2S = 2n/d.
(This also shows the tightness of Jensen’s lower bound for general graphs.) The latter, on
the other hand, fosters friendship inside each layer; if we ignore the scores in odd layers
then it is just a model on n

2d
Kd,d and we readily know E(2S) ≥

(
1+

√
πd

2

)n/2d
= 2n·Θ(log k/k)

by the last section. (This also implies that the asymptotics in Theorem 22 is tight.)

4.5 Notes and References
Chebyshev’s sum inequality (Lemma 16) is a special case of the following very general

inequality:

Lemma 23 (The FKG inequality, [7]). Let L be a finite distributive lattice. Suppose
µ : L → R+ satisfies µ(x)µ(y) ≤ µ(x ∨ y)µ(x ∧ y) for all x, y ∈ L. Let f, g : L → R+ be
monotonically increasing functions. Then(∑

x∈L

µ(x)f(x)

)(∑
x∈L

µ(x)g(x)

)
≤

(∑
x∈L

µ(x)f(x)g(x)

)(∑
x∈L

µ(x)

)
.

– Page 27 of 36 –



Jensen’s Inequality, Partition Functions,
and Models with Ternary Interactions

An elementary proof can be found in the book [1] by Alon and Spencer.
Our proof of Theorem 18 borrows idea from Kahn’s paper [10] where he used entropy

to show that n
d
Kd,d maximises the number of independent sets among all bipartite graphs

of order n. To apply argument of this kind, it seems essential to write the target value as
some unweighted count, just as we did via the (x,R) trick. It can be generalised for any
λ ∈ N by choosing R ∈ {0, . . . , λ− 1}n and disregarding the difference among non-zeros.
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Chapter 5 High Girth and Beyond

In a way, we have arrived at a satisfying position. The discussion so far shows that the
asymptotic behaviour of both our lower and upper bounds are tight for general graphs. The
gap between them, however, is intriguing. Our tight instances for both bounds have small
undirected girth. What is the behaviour of Z(2) when girth is large? Will it be the case
that the gap closes up in the high-girth scenario? This chapter reveals strong evidence for
such behaviour.

Yet many interesting problems arise and remain open. Some of these ask for the exact
solution to tree-like graphs, while others concern the big picture of analysing PPSZ. The
final section concludes this thesis with a list of open problems that we consider significant.
Tackling them would definitely push forward our understanding of the entire picture.

5.1 Polynomial with Local Coefficients
Definition 4. Define polynomial pG(z) := ZG(z + 1) = 1

n!

∑
π(z + 1)S(π), where the sum-

mation is over all permutations on V (G). Let d := deg pG ≤ n. Denote its standard form
as pG(z) =

∑d
i=0 aiz

i, where ai are the standard coefficients.

What is the point for translating ZG(z) by 1? Let us massage pG(z) a little. Below we
abuse notation S(π) to denote the set of scoring vertices.

pG(z) =
1

n!

∑
π

∏
v∈S(π)

(z + 1) =
1

n!

∑
π

∑
R⊆S(π)

z|R|

=
1

n!

∑
R⊆V

z|R|
∑
π

∏
uv
v∈R

1[πu < πv]

=
∑
R⊆V

z|R| · 1

|R ∪ ♭R|!
∑
π on
R∪♭R

∏
uv
v∈R

1[πu < πv]

where the factor n!/|R ∪ ♭R|! arise because we may choose permutation outside R ∪ ♭R

arbitrarily, leading to (|R ∪ ♭R|+ 1) · · ·n possibilities. Now we can write explicit formulae
for the standard coefficient ai:

ai =
∑
R⊆V
|R|=i

1

|R ∪ ♭R|!
∑
π on
R∪♭R

∏
uv
v∈R

1[πu < πv]. (5–1)

Note that the inner evaluation cares only about R ∪ ♭R; external structures vanish. In this
sense, ai is “locally computable”. Compared to ZG, the polynomial pG breaks things into
more manageable pieces, allowing us to establish our main theorem:

Theorem 24. If there exists a constant β > 1 such that pG(z) has no root in the complex
disc {z ∈ C : |z| ≤ β} for all G, then there is a function p̂(z), depending on n but
independent of graph structure, such that e−ϵnp̂(z) ≤ pG(z) ≤ eϵnp̂(z) for all graphs G and
all z ≤ 1. Here ϵ = O(1/βgirth(G)).

Remark. We remind the reader that pG(−1) = Z(0) = 0, so the condition of the theorem
can never be met actually. But we believe that z = −1 is the only violation inside a large
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region including the unit disc. In that case, there is a simple workaround of this issue; see
chapter notes for discussion. We insist stating the current theorem to make life easier.

The proof is presented in the following sections. One more preparation is necessary.
Call a graph invariant f multiplicative if f(G∪̇G′) = f(G)f(G′). Similarly, call it additive
if f(G∪̇G′) = f(G) + f(G′). Our polynomial pG(z), when viewed as a graph invariant, is
multiplicative; just observe that

ZG∪̇G′(z) = E
x on G
x′ on G′

(
zSG(x)+SG′ (x′)

)
(x, x′ ∼ U)

= E
x

(
zSG(x)

)
· E
x′

(
zSG′ (x′)

)
(independence)

= ZG(z) · ZG′(z).

5.2 Barvinok’s Approach
Define ℓG(z) := ln pG(z). Let us Taylor expand it at the origin:

ℓG(z) =
∞∑
j=0

ℓ(j)(0)

j!
zj .

On the other hand, we could truncate the expansion at j = m for some fixed number m

and obtain an approximation

ℓ̂G(z) :=
m∑
j=0

ℓ(j)(0)

j!
zj .

What is the quality of this approximation? Barvinok’s lemma asserts that ℓ̂G is quite close
to ℓG under certain circumstances, even when m is arguably small.

Lemma 25 (Barvinok). Let r1, r2, . . . , rd be the complex roots of pG(z). If |ri| ≥ β > 1

for all i, then |ℓ̂G(z)− ℓG(z)| < ϵd provided |z| ≤ 1 and m ≥ logβ(
1

(β−1)ϵ
).

Proof. Given the knowledge of complex roots, we could write

pG(z) = c ·
d∏

i=1

(z − ri) and ℓG(z) = ln c+
d∑

i=1

ln(z − ri).

Differentiating the second equation for j times and taking z = 0 gives

ℓ
(j)
G (0) = −(j − 1)!

d∑
i=1

r−j
i . (5–2)

So for |z| ≤ 1 the error between ℓ̂G and ℓG is bounded by

|ℓ̂G(z)− ℓG(z)| =

∣∣∣∣∣
∞∑

j=m+1

ℓ
(j)
G (0)

j!
zj

∣∣∣∣∣ ≤
∞∑

j=m+1

d∑
i=1

1

|j| · |ri|j
≤ 1

m+ 1

∞∑
j=m+1

d∑
i=1

1

|ri|j
.

But |r1|, . . . , |rd| ≥ β by assumption, thus

|ℓ̂G(z)− ℓG(z)| ≤
d

m+ 1

∞∑
j=m+1

1

βj
=

d

(m+ 1)(β − 1)βm

which is bounded by ϵd when m ≥ logβ(
1

(β−1)ϵ
).
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Corollary 26. Let p̂G(z) := exp{ℓ̂G(z)}. If pG(z) has no complex roots in the β-disc, then
e−ϵnp̂G(z) ≤ pG(z) ≤ eϵnp̂G(z).

Be alarmed that we are not done yet: p̂G might depend on the specific graph structure
G, so it remains unclear at the moment if Theorem 24 holds. Nonetheless, it suggests a
way towards the goal:

Prove that p̂G does not really depend on G.

At first glance this looks impossible. But if we restrict ourselves to high-girth graphs, it
has a rather simple explanation. First, observe that p̂G = exp{ℓ̂G} only depends on the first
m derivatives of ℓG. Second, it turns out that these derivatives depend only on a0, . . . , am.
To see this, note ℓ′G(z) = p′G(z)/pG(z), or equivalently p′G(z) = pG(z)ℓ

′
G(z). Differentiating

both sides j − 1 times and taking z = 0,

j! aj =

j−1∑
i=0

(
j − 1

i

)
i! ai ℓ

(j−i)
G (0). (5–3)

So we could solve ℓ
(1)
G (0), . . . , ℓ

(m)
G (0) from a0, . . . , am and the boundary ℓ

(0)
G (0) = 0. Third,

by (5–1), the coefficient ai merely depends on the structure R ∪ ♭R where |R| = i ≤ m.
Finally, if the girth of G is large enough, then such R ∪ ♭R always forms a forest, revealing
no specific graph structure at all!

5.3 Structures Disappear for High-Girth Graphs
This section makes the explanation above more precise. We begin with some definitions.

Definition 5. A coloured digraph H of maximum degree ≤ k − 1 is called a certificate if

(1) Each v ∈ H is coloured either black or white;
(2) Every black vertex has exactly k − 1 predecessors in H;
(3) Every white vertex has at least one black successor.

Write |H| for the number of vertices in H, and ‖H‖ for the number of black vertices in
H; clearly |H| ≤ k‖H‖. We say a digraph G is isomorphic to H, denoted G ∼= H, in the
sense of digraph isomorphism (i.e. disregarding colours). Denote by aut(H) the number of
automorphisms of H, but this time taking colours into account.

Figure 5–1 illustrates the idea. Intuitively, the black vertices encode score information,
while the white vertices serve as (additional) witnesses. Item (2) enforces the soundness of
witnessing, and item (3) rules out redundant witnesses.

Figure 5–1 Examples when k = 3. The leftmost graph is a certificate while the other two
are not. The red circles mark violation of the definition.

Let H be the class of all certificates. Define its subclass, Hs, by admitting those H with
|H| ≤ s. Further restrict this subclass to Cs by choosing only connected certificates (in the
sense of undirected connectivity).
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Definition 6. For H ∈ H, define ind(H,G) := |{S ⊆ V (G) : G[S] ∼= H}|, that is the
number of sites we could embed H into G as an induced subgraph (disregarding colours).
Note that ind(H,G) = 0 when |H| > |G|.

Using the definitions above, the coefficients ai (5–1) may be rewritten as

ai =
∑
H∈H
∥H∥=i

1

|H|!
ind(H,G) · aut(H)

∑
π on H

∏
uv∈H
v black

1[πu < πv]

=
∑

H∈Hki

1

|H|!
ind(H,G) · aut(H) · 1[‖H‖ = i]

∑
π on H

∏
uv∈H
v black

1[πu < πv]

=:
∑

H∈Hki

λi(H) · ind(H,G) (5–4)

Observe that the coefficients λi(H) may be predetermined without even knowing G. Hence,
the structure of G pops up at ind(H,G) only.

Our next step is to make the summation effectively running over H ∈ Cki instead of
H ∈ Hki. To this end, we develop some simple properties of ind(H,G).

Lemma 27. Suppose H1 ∈ Hr, H2 ∈ Hs, then

ind(H1, G) · ind(H2, G) =
∑

H∈Hr+s

c(H1,H2;H) · ind(H,G)

where c(H1,H2;H) := |{(S1, S2) : S1 ∪ S2 = V (H),H[S1] ∼= H1,H[S2] ∼= H2}|.

Proof. The left-hand side counts the size of the set {(S1, S2) : G[S1] ∼= H1, G[S2] ∼= H2}.
We could imagine moving two templates, H1 and H2, around the graph G and count every
time when both of them found a match.

The right-hand side does the same thing in two stages: (i) it enumerates H as a candidate
structure for G[S1] ∪ G[S2]; (ii) it decomposes H into S1, S2 and count. The c(H1,H2;H)

takes care of possible decompositions, while the ind(H,G) accounts for possible locations
of the bulk G[S1] ∪G[S2].

This lemma is useful since it decomposes a product to linear combination. As we will see
later, applying it iteratively would kill higher-order terms that are difficult to manipulate.

The following crucial lemma gives us the power for simplifying H to C.

Lemma 28. Let f(G) :=
∑

H∈H γ(H) · ind(H,G) be a graph invariant, then: f(G) is
additive ⇐⇒ γ(H) = 0 for all disconnected H.

Proof. (⇐) For any disjoint graphs G, G′ and connected certificate H, it holds that
ind(H,G∪̇G′) = ind(H,G) + ind(H,G′) since H cannot span two disjoint components.
Hence f(G∪̇G′) = f(G) + f(G′).

(⇒) Assume without loss of generality that γ(H) = 0 for all H ∈ C. (If not, then
subtract

∑
H∈C γ(H) · ind(H,G) from f(G). The resulting invariant preserves additivity as

well as the disconnected coefficients.) We claim that γ(H) = 0 for all H ∈ H.
Proceed by induction on |H|. The base case |H| = 1 is vacuously true as H must be

connected. Now assume the claim holds for |H| ≤ s and we step to |H| = s + 1. If H is
connected then we are done. If H is disconnected, then partition it into two components,
say H1 and H2. But by induction hypothesis, f(Hi) =

∑
|H′|>s γ(H

′) · ind(H ′,Hi), which
is 0 since |Hi| ≤ s < |H ′|. Hence f(H) = f(H1) + f(H2) = 0 by additivity. On the other
hand, again by hypothesis we have f(H) = γ(H) ind(H,H) = γ(H). Therefore γ(H) = 0,
finishing the induction.

– Page 32 of 36 –



Jensen’s Inequality, Partition Functions,
and Models with Ternary Interactions

Write σj as a shorthand for
∑d

i=1 r
−j
i ; see (5–2). Plug (5–2) into (5–3) and simplify, we

would get a recursive formula

σj = −jaj −
j−1∑
i=1

aiσj−i.

The recursion is non-linear due to the product terms aiσj−i. But we could spread the
product with the help of Lemma 27. It’s easy to prove by induction on j that

σj =
∑

H∈Hkj

γj(H) · ind(H,G).

for some constants γj(H) independent of G.
Because pG(z) is multiplicative, the power sum of roots, σj , must be additive. Then by

Lemma 28, γj(H) = 0 whenever H is disconnected. Therefore, the above equation simplifies
to

σj =
∑

H∈Ckj

γk(H) · ind(H,G).

Finally, recall ℓ(j)G (0) = −(j − 1)! σj by (5–2), so the derivatives ℓ
(j)
G (0) only depend on

ind(H,G) for H ∈ Ckj . But the next easy fact reminds us that such ind(H,G) never depend
on G provided the girth is large:

Lemma 29. Suppose H ∈ Ckj . For all (k − 1)-regular digraphs G with girth > kj, the
count ind(H,G) only depends on n.

Proof. Since girth(G) > |H|, we have ind(H,G) = 0 whenever H has a loop. So ind(H,G) >

0 only when H is a tree. But the number of ways we could embed a small tree into G does
not depend on the structure of G, as we always (effectively) see a k-regular tree everywhere
in G. So ind(H,G) only depends on the number of sites, i.e. the order n.

Corollary 30. There is a universal p̂(z) such that p̂G(z) = p̂(z) for all graphs G of girth
> km and order n.

Corollary 26 along with Corollary 30 directly imply Theorem 24.

5.4 Open Problems
Problem 1. For the time being, we are unable to verify the zero-free condition of Theorem
24. However, numerical computations on some toy instances are in strong favour of it. We
have tried 2×4, 2×5, 3×3 and 3×4 square grids, as well as some other make-up 2-regular
graphs. The root pattern of pG(z) for these graphs are depicted in Figure 5–2. Based on
graphical observations, we propose the bold conjecture

pG(z) 6= 0 for all G and z : <z > −1.

Try to prove it. If we succeed, then by Theorem 24, Z(2) indeed disregards structures for
high-girth graphs.

Problem 2. Determine the asymptotic behaviour of Z(2) when girth is large. Is it 2n·Θ(1/k),
2n·Θ(log k/k), or somewhere in between? Note that Theorem 24 gives no clues to the answer.
To tackle this problem, one may wish to solve the limiting model on an infinite k-regular
tree. That is, an infinite tree where every vertex has k successors and k predecessors.
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Figure 5–2 The root pattern of pG(z) on the complex plane

Problem 3. Suppose we fix the spins of some vertices, which we call a “boundary condi-
tion”. Does the effect on E(Sv) decay quickly when the distance between boundary and v

increases? (In statistical physics, such property is named correlation decay.)

Problem 4. Generalise the model and analysis to PPSZ. Our current model has score
measure Sv := 1[xv ≥ maxx♭v] that corresponds to PPZ. For the more complicated PPSZ,
let us introduce more terminologies. Fix parameter h ∈ N which corresponds to the “power”
of PPSZ. Define ∇v to be all ancestors of v within distance h. Set U ⊆ ∇v is called
a v-cut if, starting from v, every maximal simple path in ∇v bumps into U . Finally,
Sv := 1[∃v-cut U : xv ≥ maxxU ].

5.5 Notes and References
Our polynomial pG(z) is an extension of the (x,R) trick in Chapter 4. Taking z := 1

restores the counting result.
The study of complex zeros of partition functions dates back to the Lee-Yang circle

theorem [11] on Ising model. They used the non-analyticity of logZ as a notion of phase
transition, and proved that the Ising model exhibits at most one phase transitions if there
is any.

Recently, Barvinok [4, 3] initiated the use of zero-free property in approximating par-
tition functions. Later, the work by Patel and Regts [14] speeds up his method by trans-
forming the power sum, σj , into a summation of connected induced subgraph counts. Our
exposition loosely follows their method, but with special focus on analytic properties rather
than algorithmic implementations. We would like to mention that Liu, Sinclair and Srivas-
tava [13] generalised Patel and Regts’ work to the Ising model. Their paper introduced a
structure named “insects” which serves the same purpose as our “certificates”.

The condition of Theorem 24 can be modified to avoid the root z = −1. Roughly
speaking, if one could find a δ > 0 such that pG(z) 6= 0 for (<z,=z) ∈ [−δ, 1 + δ]× [−δ, δ],
then the conclusion of Theorem 24 still holds. The proof idea is to construct a suitable
polynomial q(z) that maps the disc to the aforementioned strip. A detailed proof can be
found in Lemma 2.2.3 of Barvinok’s book [3].
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