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Go through variables in random order;

— could not determine = flip coin
— could determine = saved a coin!

(k — 1)-regular, n vertices
Sample x € [0, 1]™ uniformly

— o scores if it gets larger value than preds

S := #scoring vertices

E(2%) > 2B(S) = 2n/F - 1.9509" when k = 3
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Main Results

For square grid, E(2°) > 1.2711". (Jensen: E(25) > 1.2500)

For general (k — 1)-regular digraphs,

£
k—1

(k _ 1)4]€2> — 2n-®(log k/k)

(Jensen: E(2%) > 2"/F)

(k= 2)1P
(2k — 3)!

E(25) < (% N

Provide evidence that E(2°) is essentially identical for all
high-girth graphs of order n.
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General Upper Bound
Bipartite ~ 7 %\,” G :=(AUB,E"

Model AN regular; 2n vertices
o N
AN NN
Sample z € [0,1]*" uniformly
S counts scores for only
Lemma Eq(2%) < Eq(2°)
Theorem Eq (2°) < Ex(2°)

=l R 0

(n/k copies of complete bipartite graphs)
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Q;:{ z € [0,1)%", Re{+,_}n}

Sb(il?) =0 —= Rpis —

logEq/(2°) <--» H(x,R)

< % ZbeB H(xbb)

Let Mj := max zy;, and condition on it!

— If M, is small then H(xy;) is lowered
— If M, is large then H(zy, Ry | x4) is lowered

(Kahn’s entropy argument)
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Likely... Structure vanishes when girth is large

Question  Asymptotics when girth is large?
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