Jensen's Inequality, Partition Functions and Models with Ternary Interactions

Yanheng Wang

Prof. Dominik Scheder, advisor

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

k-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!

k-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$ k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin

- could determine \Rightarrow saved a coin!

 $(x \lor \neg y \lor z) \land \cdots$

 $k ext{-CNF}$ $\bigwedge_i \ (\ell_{i1} \lor \cdots \lor \ell_{ik})$ $k ext{-SAT}$ Find satisfying assignment for a $k ext{-CNF}$ PPZ Go through variables in random order; $-\operatorname{could}$ not determine \Rightarrow flip coin $-\operatorname{could}$ determine \Rightarrow saved a coin! $(x \lor \neg y \lor z) \land \cdots \quad y \mapsto \mathsf{true}$

 $k ext{-CNF}$ $\bigwedge_i \ (\ell_{i1} \lor \cdots \lor \ell_{ik})$ $k ext{-SAT}$ Find satisfying assignment for a $k ext{-CNF}$ PPZ Go through variables in random order; $-\operatorname{could}$ not determine \Rightarrow flip coin $-\operatorname{could}$ determine \Rightarrow saved a coin! $(x \lor \neg y \lor z) \land \cdots \quad y \mapsto \mathsf{true}$

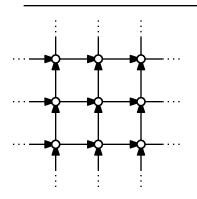
 $x \mapsto \mathsf{false}$

 $z\mapsto \mathsf{true}$

k-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



k-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



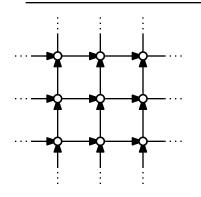
(k-1)-regular, n vertices

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



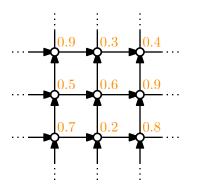
(k-1)-regular, n vertices Sample $x \in [0,1]^n$ uniformly

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



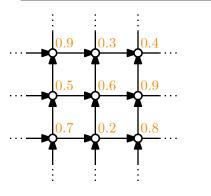
(k-1)-regular, n vertices Sample $x \in [0,1]^n$ uniformly

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



(k-1)-regular, n vertices

Sample $x \in [0,1]^n$ uniformly

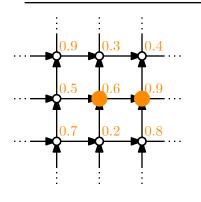
v scores if it gets larger value than preds

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

PPZ Go through variables in random order;

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



(k-1)-regular, n vertices

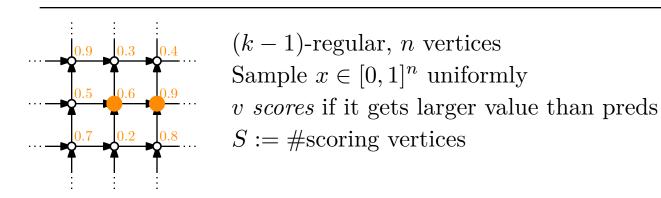
Sample $x \in [0,1]^n$ uniformly

v scores if it gets larger value than preds

$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

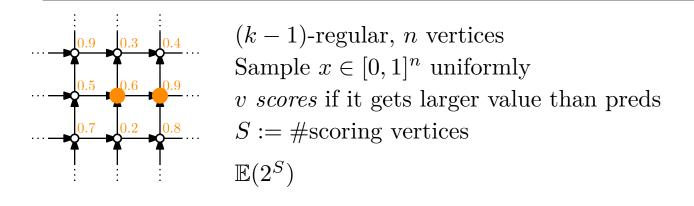
- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

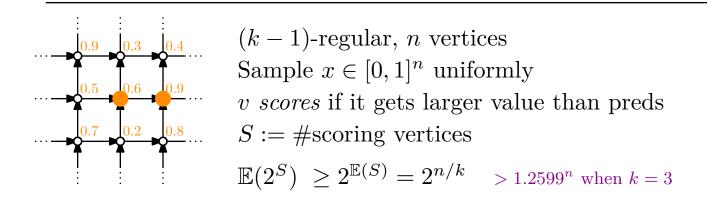
- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



$$k$$
-CNF $\bigwedge_i (\ell_{i1} \lor \cdots \lor \ell_{ik})$

k-SAT Find satisfying assignment for a k-CNF

- could not determine \Rightarrow flip coin
- could determine \Rightarrow saved a coin!



Main Results

For square grid, $\mathbb{E}(2^S) > 1.2711^n$. (Jensen: $\mathbb{E}(2^S) > 1.2599^n$)

Main Results

For square grid, $\mathbb{E}(2^S) > 1.2711^n$. (Jensen: $\mathbb{E}(2^S) > 1.2599^n$)

Provide evidence that $\mathbb{E}(2^S)$ is essentially identical for all high-girth graphs of order n.

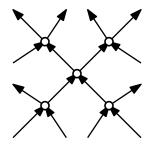
Main Results

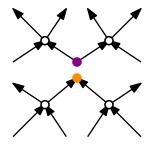
For square grid, $\mathbb{E}(2^S) > 1.2711^n$. (Jensen: $\mathbb{E}(2^S) > 1.2599^n$)

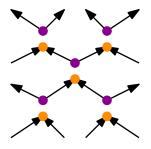
For general (k-1)-regular digraphs,

$$\mathbb{E}(2^S) \le \left(\frac{1}{2} + \frac{[(k-2)!]^2}{(2k-3)!}(k-1)4^{k-2}\right)^{\frac{n}{k-1}} = 2^{n \cdot \Theta(\log k/k)}.$$
(Jensen: $\mathbb{E}(2^S) \ge 2^{n/k}$)

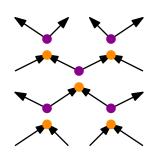
Provide evidence that $\mathbb{E}(2^S)$ is essentially identical for all high-girth graphs of order n.





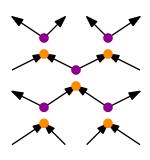


Bipartite Model



 $G' := (A \cup B, E')$ regular; 2n vertices

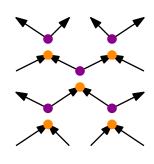
Bipartite Model



 $G' := (A \cup B, E')$ regular; 2n vertices

Sample $x \in [0,1]^{2n}$ uniformly S counts scores for $b \in B$ only

Bipartite Model



 $G' := (A \cup B, E')$

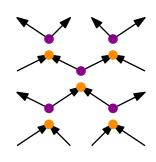
regular; 2n vertices

Sample $x \in [0,1]^{2n}$ uniformly S counts scores for $b \in B$ only

Lemma

$$\mathbb{E}_G(2^S) \le \mathbb{E}_{G'}(2^S)$$

Bipartite Model



$$G' := (A \cup B, E')$$

regular; 2n vertices

Sample
$$x \in [0,1]^{2n}$$
 uniformly
 S counts scores for $b \in B$ only

Lemma

$$\mathbb{E}_G(2^S) \le \mathbb{E}_{G'}(2^S)$$

Theorem

$$\mathbb{E}_{G'}(2^S) \le \mathbb{E}_K(2^S)$$

$$K := \mathbb{Z}$$

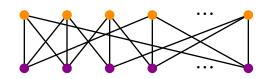
(n/k copies of complete bipartite graphs)

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \quad \mathbb{K} \quad \cdots \quad \mathbb{K}$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \quad \mathbb{K} \quad \cdots \quad \mathbb{K}$$

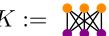
$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \times \mathbb{K} \quad \times \mathbb{K} \quad \cdots \quad \times \mathbb{K}$$

Proof Sketch



$$\Omega := \left\{ \right.$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \quad \mathbb{K} \quad \cdots \quad \mathbb{K}$$



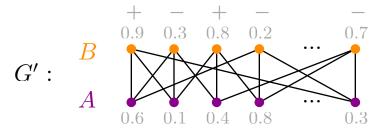
$$G': A = \begin{bmatrix} 0.9 & 0.3 & 0.8 & 0.2 & 0.7 \\ A & 0.6 & 0.1 & 0.4 & 0.8 & 0.3 \end{bmatrix}$$

$$\Omega := \left\{ \begin{array}{c} x \in [0,1]^{2n}, \end{array} \right.$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := |\mathbf{X}| \quad |\mathbf{X}| \quad \cdots \quad |\mathbf{X}|$$



$$\Omega := \left\{ \begin{array}{c} x \in [0,1]^{2n}, & R \in \{+,-\}^n \\ \end{array} \right\}$$



$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \qquad \cdots$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \Longrightarrow R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \blacktriangleleft \cdots \blacktriangleright H(x,R)$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \blacktriangleleft \cdots \blacktriangleright H(x,R)$$

$$= H(x_A) + H(x_B, R \mid x_A)$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \times \mathbb{K} \quad \times \mathbb{K} \quad \cdots \quad \times \mathbb{K}$$

$$G': A \longrightarrow b$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \blacktriangleleft \cdots \blacktriangleright H(x,R)$$

$$= H(x_A) + H(x_B, R \mid x_A)$$

$$\mathbb{E}_{G'}(2^S) \leq \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \quad \mathbb{K} \quad \cdots \quad \mathbb{K}$$

$$G': A \longrightarrow b$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \blacktriangleleft \cdots \blacktriangleright H(x,R)$$

$$= H(x_A) + H(x_B,R \mid x_A)$$

$$\leq \frac{1}{k} \sum_{b \in B} H(x_{bb}) \qquad \leq \sum_{b \in B} H(x_b,R_b \mid x_A)$$

$$\mathbb{E}_{G'}(2^S) \le \mathbb{E}_K(2^S) \qquad K := \mathbb{K} \quad \cdots$$

Proof Sketch

$$G': A \longrightarrow b$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \blacktriangleleft \cdots \blacktriangleright H(x,R)$$

$$= H(x_A) + H(x_B,R \mid x_A)$$

$$\leq \frac{1}{k} \sum_{b \in B} H(x_{bb}) \stackrel{\leq}{\sum_{b \in B}} H(x_b,R_b \mid x_A)$$

Let $M_b := \max x_{bb}$ and condition on it!

$$\mathbb{E}_{G'}(2^S) \le \mathbb{E}_K(2^S) \qquad K := \mathbb{K}$$

Proof Sketch

$$G': A \longrightarrow b$$

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \longleftarrow H(x,R)$$

$$= H(x_A) + H(x_B,R \mid x_A)$$

$$\leq \frac{1}{k} \sum_{b \in B} H(x_{bb}) \qquad \leq \sum_{b \in B} H(x_b,R_b \mid x_A)$$

Let $M_b := \max x_{bb}$ and condition on it!

- If M_b is small then $H(x_{bb})$ is lowered
- If M_b is large then $H(x_b, R_b \mid x_A)$ is lowered

$$\mathbb{E}_{G'}(2^S) \le \mathbb{E}_K(2^S) \qquad K := \mathbb{K}$$

Proof Sketch

$$\Omega := \left\{ \begin{array}{l} x \in [0,1]^{2n}, \quad R \in \{+,-\}^n \\ S_b(x) = 0 \implies R_b \text{ is } - \end{array} \right\}$$

$$\log \mathbb{E}_{G'}(2^S) \longleftarrow H(x,R)$$

$$= H(x_A) + H(x_B,R \mid x_A)$$

$$\leq \frac{1}{k} \sum_{b \in B} H(x_b,B) \qquad \leq \sum_{b \in B} H(x_b,R_b \mid x_A)$$

Let $M_b := \max x_{bb}$ and condition on it!

- If M_b is small then $H(x_{bb})$ is lowered
- If M_b is large then $H(x_b, R_b \mid x_A)$ is lowered

(Kahn's entropy argument)

Recap

Proved

 $2^{n/k} \le \mathbb{E}(2^S) \le 2^{n \cdot \Theta(\log k/k)}.$

Recap

Proved $2^{n/k} \le \mathbb{E}(2^S) \le 2^{n \cdot \Theta(\log k/k)}$.

Likely... Structure vanishes when girth is large

Recap

Proved $2^{n/k} \le \mathbb{E}(2^S) \le 2^{n \cdot \Theta(\log k/k)}$.

Likely... Structure vanishes when girth is large

Question Asymptotics when girth is large?

Q&A Time!