
Computing Power of the Game Manufactoria

Yanheng Wang

January 6, 2021

Abstract

Manufactoria is a game that asks players to build a factory pipeline for quality
control. This short note formalises the computational model underlying the game and
discusses its computing power. We show that the model is Turing complete, and that
the time and space complexity coincide in this model.

1 The Factory Model

The factory allows several sorts of facilities:

Facility Function

empty � rejects the product

conveyor moves the product to the next cell pointed by the arrow

readers tries to read out the first dot on product’s tape, then
branches according to its colour (black = unmatched)

printers appends a dot on product’s tape, with specified colour

We let F := {�, , , , , , , } be the set of facilities. The alphabet of the product
tape is Σ := {B,R, Y,G}. A factory can thus be abstracted as an m ×m square matrix
A. Each element Aij is a 3-tuple (f, o, s) where f ∈ F is the facility of the (i, j)-cell,
o ∈ {↑, ↓,←,→} is its orientation (↑ being the upright position) and s ∈ {0, 1} specifies
whether we swap colours of its two wings.

During the execution of our factory model, the state at any given time can be encoded
by a configuration (i, j, x) ∈ [m]× [m]×Σ∗, where i, j specifies the position of the product,
and x records its tape content.

We are now ready to define the yielding relation (i, j, x) =⇒ (i′, j′, x′), which is almost
self-evident. To avoid the unpleasant prolixity, we only mention some typical cases. Let
(f, o, s) := Aij .

1. If f = �, then (i, j, x) =⇒ (i′, j′, x′) iff (i, j, x) = (i′, j′, x′).

2. If f = and x = Rw where w ∈ Σ∗, then (i, j, x) =⇒ (i′, j′, x′) iff x′ = w and
(i′, j′) is one step away from (i, j) to the direction of the red arrow.

1

3. If f = , x = wa where w ∈ Σ∗ and a 6∈ {B,R}, then (i, j, x) =⇒ (i′, j′, x′)
iff x = x′ and (i′, j′) is one step away from (i, j) to the direction o. In words, the
product is passed to the black arrow and x remains unmodified in the case that the
leading colour on tape fails to match that of the reader’s.

4. If f = , then (i, j, x) =⇒ (i′, j′, x′) iff x′ = xB and (i′, j′) is one step away from
(i, j) to the direction o.

Note that our definition naturally rules out the possibility of “running away from the
factory”; in that case, the yielding relation would get stuck since i′, j′ ∈ [m].

Definition 1 (computation). Given a factory A and a product x ∈ {B,R}∗ as its input,
the computation of A on x is defined as a sequence of configurations (1, 1, x) =: c0, c1, . . .
where ck =⇒ ck+1 for all k.

We say A accepts x if there is a computation with ck = (m,m, y) for some y ∈ Σ∗

and k > 0. It rejects x if there is a computation with ck = (i, j, y) and Aij = � for some
(i, j) 6= (m,m), y ∈ Σ∗ and k > 0.

Remark. We designate the (1, 1)-cell as the starting point of the computation, and
(m,m)-cell the “accepting point”. Clearly, any facility placed on that spot shall not
be effective. This mildly different setting from the original game is obviously irrelevant
for our purpose.

We also remind the reader of the possibility that our factory never halts – neither
accepts nor rejects in finite number of steps.

As is the case for any computational model, we can charge one unit of time for each
step of yielding relation. The total amount of time before halting is called the running
time of A(x). Similarly, the total amount of tape cells used during the computation is
called the space consumption of A(x). Then we can define the rather standard time and
space complexity for our factory model.

2 The Computing Power of Factory Model

2.1 Equivalence to Turing Machines

Some levels in Manufactoria hints at the computing power of the factory model. Apart
from typical regular languages such as {x | x has alternating reds and blues} and context-
free languages such as {RnBn | n ∈ N}, the model is in fact capable of dealing with
recursive languages such as binary addition. We note that the factory model has a close
affinity with single-tape Turing machines: the spatial placement of facilities in a factory
correspond to state arrangement of a Turing machine. Also, that the readers read at the
front and printers write at the back (i.e. in a queue-fashion) can be overcome by proper
design. It thus comes at no surprise that the computing power of factory model coincides
with Turing machines.

Theorem 1. The factory model is Turing complete. In fact, factories and Turing machines
can simulate each other within a quadratic overhead in time.

2

Proof. It is obvious that there is some Turing machine M simulating A; otherwise Manu-
factoria would not run on our computers. The simulation can be done in quadratic time
and linear space. The tape content of M is identical to that of A’s, preceded by the the
matrix A, a scratch area of length O(logm), and the coordinate pair (i, j) of the current
configuration. In each step we read the first dot, look into the matrix A (indexed by two
accumulators in the scratch area), and modifies the tape content according to Aij . Each
step costs at most linear time (in case Aij contains a printer), so the overall complexity is
as claimed.

Conversely, we shall design an m×m factory A that simulates a Turing machine M .
Let δ : Q× {R,B,t} → Q× {R,B,t} × {←,→} be the transition function of M , where
Q = {1, 2, . . . , |Q|} is the set of states. Suppose the starting state is 1 and, without loss
of generality, the accepting state is |Q|.

We separate the m × m grid into |Q| disjoint nonempty zones, Z1, Z2, . . . , Z|Q|. We
require that (1, 1) ∈ Z1, (m,m) ∈ Z|Q|, and that Zr solely consists of �’s for any rejecting
state r. We shall design A so that the product is sent to zone Zq whenever M enters state

q. Conceptually this is simple: we may place a reader at Zq to branch according to

the tape content. The red side is directed via ’s to the state specified by δ(q,R), and
similar for the blue and black sides.

However, the head of Turing machine M might hang somewhere in middle of the tape,
while the reader and printer in factory A always sit at the front and back. The tape
position pointed by A and M are usually inconsistent, so we must find a way to navigate
through the tape in A. To accomplish this, A inserts a mark Y to the leftmost of the tape
at startup; see Figure 1(a) for implementation. The mark always indicates the current
head position of M . Besides, A appends another Y at the end of the tape to indicate
boundary. As A proceeds to simulate M in state q:

1. It reads through the tape until a Y is met. During the process, it simply copies what
it had read to the end of the tape, with a lag of one symbol. That is, the symbol l to
the left of Y will not be appended to the end immediately; rather, this information
is kept by branching. See Figure 1(b).

2. It removes the mark Y by a , and then branches by according to the next
symbol a (which is exactly the one pointed by M .) Suppose (q′, a′, d) := δ(q, a).

(1) If d =←, then it prints Y , l and a′ consecutively.

(2) If d =→, then it prints l, a′ and Y consecutively.

3. Finally, it copies every remaining symbols until another Y is met. (This Y indicates
the end of tape, and is copied to the end of tape as well.)

Now it remains to resolve the final twist: the possible crossing among the conveyor
belts. Although this is allowed in Manufactoria, it is not modeled in our factory. Anyway,
we shall show that crossings can be removed without affecting the computation. Here we
utilise the vacant symbol G and the ability of . For a crossing site (i, j), we place on it

a instead of . The black arrow is pointing to the same direction as the vertical flow,
so it acts just like a in the vertical direction. As for the horizontal direction, we may

3

Intake

Outlet

(a)

Intake

Outlet when l = B

Outlet when l = ε

Outlet when l = R

(b)

Figure 1: Two subroutines

stamp a G at the front of the tape before we send the product into the site. The reader
will identify such a G and sends it horizontally.

The overall time complexity is quadratic since each step of simulation traverses the
entire tape, and each crossing resolution requires an additional traversal. (Note that the
number of crossings is a contant only related to m.)

Corollary 2. The class P in both models coincide.

The simulation itself is interesting in some practical sense, for the factory model is
extremely close to physical implementation of a pipelined factory. We list here several
considerable advantages over a typical machine model:

• Standardising physical placement: the factory model can be directly embedded in a
planar square grid.

• Enabling parallel computation: The factory model naturally allows pipelined pro-
cessing by feeding a stream of products into the (1, 1)-cell, which is not achievable
in a machine-based model. Moreover, the processing can be totally out of order
without any harm to the correctness.

2.2 P versus PSPACE in Factory Model

It is clear from Theorem 1 that a Turing machine can simulate a factory within polynomial
(in fact, linear) space overhead, but the converse is troublesome. Recall that our factory
A must copy the entire tape string at each step of simulation, so it consumes a total space
of T (n) ·S(n) where T and S are time and space function of M . But for Turing machines,
T can be in general an exponential function of S, which charges A an exponential space
overhead. It is thus unclear from our construction that PSPACE in both models would
coincide.

We shall pose strong evidence that the PSPACE in the two models are distinct. To
simplify our discussion, we slightly restrict our model by requiring that all readers must

4

Intake

(a) (b)

εYG B R

= = = == = = =

Figure 2: Replacing readers and printers

consume a symbol each time they operate on a non-empty tape. For example, when a
reads a Y , it removes the Y from the tape and branches to the black arrow.

Lemma 3. The restriction doesn’t change the power and efficiency of the factory model.

Proof. We shall describe a method of simulating a general factory A by its restricted
counterpart A′. The basic idea is to compress Σ = {B,R, Y,G} into a binary alphabet.
In specific, we adopt the following mapping: R 7→ RR, B 7→ RB, Y 7→ BR and G 7→ BB.

At the very beginning, A′ follows the subroutine in Figure 1(a) with a modification:
it prints two symbols RB when it branches to the red side, and RR when it branches to
the blue side. Finally, when the product comes out from the black side, the Y mark is
automatically removed. From now on, we will ensure that the tape contains B’s and R’s
only.

A′ will have the same structure as A, but with all readers and printers substituted.
Any reader is replaced by three ’s connected as shown in Figure 2(a). Any printer is
split into two as shown in Figure 2(b). Obviously such construction only incurs a constant
multiplier on the time and space complexity.

Theorem 4. TIME(f(n)) = SPACE(f(n)) in the factory model.

Proof. It is trivial that TIME(f(n)) ⊆ SPACE(f(n)), so it remains to show that SPACE(f(n)) ⊆
TIME(f(n)). Suppose for the sake of contradiction that there is a language L ∈ SPACE(f(n))\
TIME(f(n)). Let A be any factory that decides L in space f(n), so at most f(n) steps
are spent on printers. By our assumption, A does not run in time f(n) for sufficiently
long input x (n := |x|). We take x so that A(x) runs for more than T := m2 · (f(n) + 2))
time. That is, A(x) spares most of its time on conveyor belts or readers. In particular, x
passes some conveyor or reader for more than T/m2 = (f(n) + 2) times. Let us denote
that specific conveyor/reader position as θ. Now we distinguish two cases:

• θ is a reader. Since there are at most f(n) symbols ever printed on the tape, and
that each reading consumes a symbol, θ would read an empty tape for at least twice.
But whenever it reads an empty tape, it always moves the product towards the black
arrow and leaves the tape empty. That is, the configuration after this step is always

5

(i0, j0, ε) for some fixed (i0, j0). Clearly, θ sits in an infinite loop and A shall never
halt, leading to a contraction.

• θ is a conveyor. Starting from θ, we follow the unique sequence of conveyors and
printers until we are blocked by a reader. Formally, we define (i, j) ` (i′, j′) if for

(f, o, s) := A(i, j), f 6∈ { , ,�} and (i′j′) is adjacent to (i, j) in direction o. We
take the closure of (i, j) under `, which gives us either a one-way path, or a path
plus a cycle. If there is a cycle, then A clearly sits on an infinite loop. If there is
no cycle, then the end of the path is a reader and the previous case applies. Either
possibility leads to a contradiction.

Corollary 5. P = PSPACE in the factory model.

6

