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Chapter 1
Probability and Counting

1.1 Intersecting Systems
𝒜⊆2[n] is called an intersecting system if A∩ A′≠∅ for all A,A′∈𝒜. How large can it be?
At most 2n−1: otherwise there must be some set S⊆[n] such that S∈𝒜 and S∈𝒜.

What if we require the system to include only k-element sets? How large can it be then?
This is answered by the Erdős-Ko-Rado theorem.

Theorem. If 𝒜⊆ �[n]k � is an intersecting system, then its cardinality is at most k
n �

n
k�.

Proof. Rephrased in probabilistic language, the theorem says that a uniform random set R∈
�[n]k � lands in the system 𝒜 with probability at most k/n.

To establish the claim, we refine the probability space as follows: Sample a permutation
𝜋 : [n]→ [n] and a value r∈ [n] uniformly, then take R≔{𝜋(r), . . . , 𝜋(r+ k − 1)}, where
the addition “overflows” when exceeding n. Indeed the R is uniform over �[n]k �, because any
condition on r is overridden by the uniform 𝜋.

Now let us study ℙ(R∈𝒜). Conditioned on 𝜋, there are n possibilities of r, but at most
k of them can lead to R∈𝒜. Suppose to the contrary that {𝜋(r), . . . , 𝜋(r+ k − 1)}∈𝒜 for
k+1 distinct r's, then surely two of them are disjoint, contradicting the assumption of 𝒜.
Therefore we must have ℙ(R∈𝒜∣𝜋)⩽k/n, which of course implies ℙ(R∈𝒜)⩽k/n. □

Remark. Probabilistic argument on a uniform space can always be cast as counting: prob-
ability becomes fractions of counts, independence becomes product (or independent sums),
conditioning is the same as counting a subspace, etc. That said, counting jargons produce less
elegant proofs. Were we to apply it in the proof above, we would have to model the two-stage
sampling as a Cartesian product and take care of messy factorials everywhere.

1.2 Kraft's Inequality
In coding theory, a finite set of bit strings C⊆{0, 1}∗ is called prefix-free if x is not a prefix
of y for any distinct x, y∈C. We can imagine a binary tree whose nodes are bit strings, with
the root being the empty string and every node x having two children x0 and x1. The set C is
prefix-free if the path from any y∈C to the root does not contain another x∈C.

Lemma. If C is prefix-free then ∑x∈C 2
−|x|⩽1, where |x| denotes the length of bit string x.

Probabilistic proof. Let ℓ ≔maxx∈C |x|. Sample a uniform random bit string r∈{0, 1}ℓ . For
each x∈C define event Ex≔{x is prefix of r}. Observe that the events are disjoint because r,
by prefix-freeness, cannot pass two x, y∈C on its way to the root. Hence we have

1⩾�
x∈C

ℙ(Ex)=�
x∈C

2−|x|. □
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Combinatorial proof. Let ℓ ≔maxx∈C |x|. Whenever there is x∈C of length |x|<ℓ , we remove
it and add x0,x1 to C. Due to prefix-freeness, x0 and x1 were not in C, so the sum ∑x∈C 2

−|x|

shall not change. Moreover C remains prefix-free. So we may repeat the procedure until all
x∈C have length ℓ . In this final situation, ∑x∈C 2

−|x|=|C| ⋅ 2−ℓ ⩽2ℓ ⋅ 2−ℓ =1. □

1.3 Set-Pair Systems
Theorem. Assume a system of set pairs {(A1,B1), . . . , (Am,Bm)} satisfies |Ai| = a, |Bi| = b,
Ai∩Bi=∅ and Ai∩Bj≠∅ for all distinct i, j. Then its cardinality is bounded by m⩽ �a+b

a �.

For convenience in our proofs, we denote the ground set by [n]≔⋃i=1
m (Ai∪Bi).

Proof. Let us sample a random ordering of the ground set [n]. For each i define an event
Ei≔{Ai<Bi}, namely “all elements in Ai come before elements in Bi”. Notice that the events
are disjoint. Say Ei={Ai<Bi} happens, then in particular (Ai∩Bj)<(Aj∩Bi). Since both
sides are non-empty, they forbid the event Ej={Aj<Bj}.

Given disjointness, we can write

1⩾ �
i∈[m]

ℙ(Ei)=m ⋅ a! ⋅b!
(a+b)!

and consequently m⩽�a+b
a �. □

1.4 Largest Anti-Chain in Hypercube
What is the lsrgest anti-chain in the poset (2[n],⊆)? Intuitively the middle level �[n]n/2� is the
most effective packing of incomparable sets, so � n

n/2� should be the answer. This is indeed
true. Let us take an arbitrary anti-chain 𝒜={A1, . . . , Am}, so that Ai⊈ Aj (equivalently,
Ai\Aj≠∅) for all i≠ j. We aim to show m⩽� n

n/2�.

Probabilistic proof. Similar to the proof for set-pair system. □

Combinatorial proof. The idea is to “lift” light sets and “sink” heavy sets to the middle level
without collision. Let ℒ collect the lightest sets (suppose their size equals k< n/2) in our
anti-chain. Define

ℛ≔�R∈� [n]k+1� :L⊆R for some L∈ℒ�.

Note that ℛ does not intersect 𝒜.
Consider a bipartite graph on ℒ⊎ℛ where edges represent inclusion relation. For any

ℒ′⊆ℒ, denote by ℛ′⊆ℛ its neighbourhood. Then we have

(n −k) ⋅ |ℒ′|=#edges in between⩽(k+1) ⋅ |ℛ′|,
thus |ℛ′|⩾|ℒ′|. By Hall's theorem, we may find a matching betweenℒ andℛ that saturates
the former. This means we may “lift” every set in ℒ to its partner in ℛ (which were not yet
occupied by 𝒜), resulting in a new anti-chain of length m.

We repeat the procedure until all sets in the anti-chain live on or above the middle level.
With a symmetric argument, we may “sink” all heavy sets so that they live on the middle
level. Then we may conclude m⩽ � n

n/2�. □

1.5 Two-Colourability of Hypergraphs
Let G be a k-uniform hypergraph. A vertex colouring is proper if no edge is monochromatic.
When k=2 (thus G is a graph), we can decide in linear time if G is 2-colourable. In sharp
contrast, for all k⩾3 the task is NP-complete.
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To gain more insights, we study mk, the minimum number of edges we need to build a
non-2-colourable k-uniform hypergraph. Clearly m2=3. Below we will apply probabilistic
arguments to upper and lower bound mk in general.

Lemma. mk⩽3k22k.

Proof. Our goal is finding a non-2-colourable G=(V,E) with at most m≔3k22k edges. We
take the vertex set as V=[n]=[k2]. To construct the edge set E, we include m independent
samples from �V

k�, potentially with repetitions.
Next we show that the random G is non-2-colourable with positive probability. Fix a 2-

colouring of V, which induces a partition V0∪V1. Without loss of generality assume |V0|⩾n/2.
A sample e∈E is monochromatic iff e⊆V0 or e⊆V1, which happens with probability at least
ℙ(e⊆V0)= �n/2

k �/�n
k�. Using independence, the (fixed) 2-colouring is proper with probability

at most �1−�n/2
k �/�n

k��
m. By a union bound over all 2n 2-colourings and some calculations, we

see that
ℙ(∃proper 2-colouring of G)<1.

Hence the random G has positive chance of being non-2-colourable. □

For lower bounds, we need to show that any G with limited number of edges is 2-colour-
able. Let us start simple:

Lemma. mk>2k−1.

Proof. Take any G with m⩽2k−1 edges. We 2-colour each vertex in G independently and
uniformly. Then any particular edge e is monochromatic with probability ℙ(Be)=1/2k−1. By
a union bound, the colouring is improper with probability ℙ(∃e:Be)<m/2k−1⩽1. (The union
bound was strict because the events intersect.) Hence there exists a proper 2-colouring of G,
meaning G is 2-colourable. □

To improve the result, we produce a 2-colouring more strategically so that we succeed with
a higher chance.

Lemma. mk>� k
4𝜋�

1/42k.

Proof. Take any G with m⩽� k
4𝜋�

1/42k edges. We try to 2-colour it by the following procedure.
First, we randomly order the vertices. Second, we follow this order and assign red/blue to
each vertex. Colour red enjoys priority: if assigning red does not cause immediate violation
then we do so; otherwise we assign blue.

Upon termination, every vertex is coloured either red or blue, and there is no monochro-
matic red edge. We will show that, with decent probability, there is no monochromatic blue
edge either.

Let B be the event that there is a monochromatic blue edge. What does it imply? Say edge
f is blue. Let v∈ f be its first vertex that got coloured. The vertex v got blue only because
there is another edge e∋v where every vertex in e\{v} was coloured red at an earlier time.

the order
fe

v

This motivates us to abstract an event Bef ≔{e comes earliear than f } for every pair of
edges e, f : |e∩ f |=1. Then by our discussion,

B⊆ �
|e∩f |=1

Bef .

1.5 TWO-COLOURABILITY OF HYPERGRAPHS 9



Apparently ℙ(Bef)= [(k−1)!]2
(2k−1)! , so by a union bound and Stirling approximation we have

ℙ(B)<m2 ⋅ [(k−1)!]2
(2k−1)! ⩽1. □

Somewhat technically, we can squeeze more from the union bound by “folding” some of the
overlapping events.

Lemma. mk> k
log k� 2k−2.

Proof. We think of the random order as putting indepedent uniform value xv∈[0,1] on every
vertex v. Those who get smaller values are coloured earlier, using the previous rule.

Fix a parameter 𝛿≔ log k
k . For each vertex v we introduce an event

Cv≔{{{{{{{{{{{{{{{{{{�xv − 12�⩽
𝛿
2}}}}}}}}}}}}}}}}}}

stating that xv is around the centre. For every pair e∩ f ={v} we define Bef as before and
decompose Bef =(Bef \Cv)∪(Bef ∩Cv). Observe that Bef \Cv implies one of the following two
events:

Le≔{{{{{{{{{{{{{{{{{{∀u∈ e, xu⩽
1−𝛿
2 }}}}}}}}}}}}}}}}}}, Rf ≔{{{{{{{{{{{{{{{{{{∀u∈ f , xu⩾

1+𝛿
2 }}}}}}}}}}}}}}}}}}.

Therefore
B⊆((((((((((((�e Le))))))))))))∪((((((((((((((�f

Rf))))))))))))))∪(((((((((((((( �
|e∩f |=1

(Bef ∩Cv))))))))))))))).
This effectively “folds” many overlapping events to the sides e and f . Concretely, we have
reduced some union of m2 terms to only m terms.

It is easy to see that

ℙ(Le)=ℙ(Rf)=(((((((((1−𝛿
2 )))))))))

k

and

ℙ(Bef ∩Cv)=�1−𝛿
2

1+𝛿
2 ℙ(Bef ∩Cv ∣xv)dxv=�1−𝛿

2

1+𝛿
2 xv

k−1(1− xv)k−1dxv⩽
𝛿
4k−1 .

So by a union bound we derive

ℙ(B)⩽2m(((((((((1−𝛿
2 )))))))))

k
+m2 𝛿

4k−1⩽
k

4logk� ⋅ e−𝛿k+ 𝛿k
4 logk<1. □

1.6 List Colouring of Bipartite Graphs
Theorem. Let G=(V,E) be a bipartite graph on n vertices. Every vertex v∈V is associated
with a colour list Lv of size at least logn. Then there always exists a proper colouring 𝜎 such
that 𝜎(v)∈Lv for all v∈V.

Perhaps the most “obvious” probabilistic argument goes as follows: For each vertex v∈V
pick a random colour 𝜎(v)∈Lv from its list, and hope that 𝜎 is proper with positive probab-
ility. Well, it ought to be positive after all—assuming the theorem is true. But to argue about
it is another story. In fact, the probability is too small to be controlled by analytical tools.
Consider for instance G≔Kn/2,n/2 and Lv≔[logn] for all v. Even for a fixed v∈V alone, the
probability that all its n/2 neighbours get a colour different from 𝜎(v) is �1− 1

log n�
n/2, a tiny

quantity. It is rather unclear how we may lower bound the probability that 𝜎 is proper.
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The lesson is that we should design the random experiment more wisely. Recall the struc-
ture of bipartite graphs: there is no edge inside each part, that is no direct conflict if we
colour every vertex in the same part red whenever available. Generally, we should couple the
colours inside each part as much as possible in order to “make space” for the other part. This
suggests the procedure below:

Assume V = A⊎B. We permute the colours in ⋃a∈A La randomly, and denote
the resulting colour sequence by (c1, . . . , cN). We colour each a∈ A by ci where
i≔min{i : ci∈La}, namely the first colour that fits. After we finish part A, we
try to colour each b∈B by a candidate in Lb not yet taken by its neighbours.

It is usually tiresome (though possible) to deal with permutations. So our final proof uses
a simplified experiment that retains much of the spirit.

Proof. Assume V=A⊎B. We sample a random subset L⊆⋃v∈V Lv by including each colour
independently with probability /1 2. We try to colour each a∈A by a candidate in La∩L, and
each b∈B by a candidate in Lb\L. If all attempts succeed, then the final colouring must be
proper.

Next we bound the failure probability. For any fixed a∈A, we haveℙ(La∩L=∅)⩽2−logn=
1/n. For any fixed b∈B, we have ℙ(Lb\L=∅)= 2−logn= 1/n. So by a union bound, the
failure probability is less than

�
a∈A

1
n +�

b∈B

1
n =1.

This means the procedure succeeds with positive probability, as desired. □
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Chapter 2
Probability Bounds via Concentration
Concentration means that a random variable X takes values from a small range (compared to
its support) with high probability. The most common concentration is around the expectation
of the variable; that is ℙ(|X −𝔼(X)|> 𝜀)≈0 for a relatively small 𝜀. Below we list several
scenarios that admit this type of concentration.

Chebyshev's Inequality. For any random variable X, we have

ℙ(|X −𝔼(X)|>𝜀)⩽ Var(X)
𝜀2 .

Therefore, X is concentrated around its expectation when Var(X)� ≪𝜀≪𝔼(X).

Chernoff's Inequality. If X=∑i=1
n Xi is a sum of independent Bernoulli variables, then

ℙ(|X −𝔼(X)|>𝜀)⩽2⋅ exp((((((((( −𝜀2
3𝔼(X)))))))))).

Therefore, X is concentrated around its expectation when 𝔼(X)� ≪𝜀≪𝔼(X).

Azuma's Inequality. Let X=X(𝜔1, . . . ,𝜔n) be a random variable in an n-dimensional pro-
duct probability space. Suppose that it is c-Lipschitz, i.e. the value X(𝜔1, . . . ,𝜔n) can change
by at most c if we alter a single coordinate 𝜔i in the outcome. Then

ℙ(|X −𝔼(X)|>𝜀)⩽2 ⋅exp((((((((( −𝜀2
2c n))))))))).

Therefore, X is concentrated around its expectation when n√ ≪𝜀≪𝔼(X).

None of these inequalities are particularly deep; they all depend on the elementary
Markov's inequality and can be understood as some kind of central limit theorem. We shall
omit the proofs. There also exist other types of concentration: Talagrand's inequality, for
example, exhibits concentration around median.

Concentration usually serves as a piece in a longer proof. It may allow us to show that
every particular bad event Bi happens with extremely small probability—so small that we
can apply union bound to avoid all bad events Bi with high probability.

In the following, however, we present two examples where concentration plays central
and direct role.

2.1 Sum Collision
Theorem. Suppose A={a1, . . . ,am}⊆ [n]. If m⩾ logn+ 1

2 log logn+Θ(1) then there exist
distinct I, I′⊆[m] such that ∑i∈I ai=∑i∈I′ ai.
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Proof. Sample independent variables X1,...,Xm∼Bern( /1 2), which encode a random index set
I⊆[m]. Consider the subset sum X≔∑i∈I ai=∑i=1

m ai Xi. Clearly

Var(X)=�
i=1

m
ai
2

4 <
mn2
4 ,

so by Chebyshev's inequality,
ℙ(|X −𝔼(X)|> m√ n)⩽ 14.

That is, at least 75% of the total 2m subset sums land in the range 𝔼(X)± m√ n.
On the other hand, we compare

3
4 ⋅2

m>2 m√ n

provided m⩾ logn+ 1
2 log logn+Θ(1). So there must be a sum collision by the pigeon-hole

principle. □

2.2 Intersection Size Collision
Theorem. Let A1, . . . , Am be subsets of [n]. If m⩽ n

log n then there exist distinct S,S′⊆ [n]
such that |S∩Ai|= |S′∩Ai| for all i∈[m].

Proof. Sample a uniform random set S⊆[n] and consider its size vector (Y1, . . . ,Ym) where
Yi≔|S∩Ai|. Note that Yi∼Bin(|Ai|, /1 2), so by Chernoff's inequality,

ℙ�|Yi −𝔼(Yi)|> 2n logn� �⩽2⋅ exp�−2n logn
3 |Ai|/2

�⩽ 2
n4/3

.

Applying a union bound over all i∈[m], we see that (Y1, . . . ,Ym) is confined in a box of size
�2 2n logn� �m with probability at least 1− 2m

n4/3
≫ 1

2 . It is straightforward to verify that

1
2 ⋅2

n>�2 2n logn� �m

provided m⩽ n
log n . Hence, by pigeon-hole principle, there must exist two sets whose size vec-

tors collide. □
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Chapter 3
Probability Bounds via Locality
In many contexts we are searching for a structure that avoids certain bad events B1, . . . ,Bn.
To employ a probabilistic argument, we may sample a structure at random and show that
ℙ(⋂i=1

n Bi)>0. The previous chapters extensively applied the union bound:

ℙ((((((((((((((((�i=1
n

Bi))))))))))))))))=1−ℙ((((((((((((((((�i=1
n

Bi))))))))))))))))⩾1−�
i=1

n

ℙ(Bi).

When the number of events n and the probabilities ℙ(Bi) are small, it produces a positive
result. We also saw refined techniques that reduce the number n and thus the loss.

But generally the union bound is rather clumsy as we are competing a long summation
with 1. Let us say ℙ(Bi)⩽ p for all i and we are interested in asymptotics when n→∞. Only
in very rare situations can we argue np→c∈(0,1); typically np either diverges or converges
to 0. This means that the union bound either is useless, or proves something excessively
strong.

Can we develop better tools to show ℙ(⋂i=1
n Bi)>0? As a warm-up, suppose B1, .. .,Bn are

mutually independent and ℙ(Bi)⩽ p<1 for all i, then

ℙ((((((((((((((((�i=1
n

Bi))))))))))))))))=�i=1
n
ℙ(Bi)⩾(1− p)n>0.

Sounds good. But independence is boring because then the existence of desired structure is
trivial even without a probabilistic argument.

What if we relax independence to “almost independence”? Intuitively the argument should
still work (though subject to some loss). The intuition is captured by the famous lemma below,
whose proof is as natural as one could think of.

Lovász Local Lemma. Suppose we have events B1, . . . ,Bn where each Bi is mutually inde-
pendent of all but d other events. Assume ℙ(Bi)⩽ 1

e(d+1) for all i. Then

ℙ((((((((((((((((�i=1
n

Bi))))))))))))))))>�1− 1
d+1�

n
>0.

Proof. By chain rule,

ℙ((((((((((((((((�i=1
n

Bi))))))))))))))))=�i=1
n
ℙ(Bi ∣B1∩ ⋅ ⋅ ⋅ ∩Bi−1),

so our goal is to lower bound each of the conditional probabilities. We claim that, for all i,

ℙ(Bi ∣B1∩ ⋅ ⋅ ⋅ ∩Bi−1)<
1

d+1.

In other words, the conditions, though very long, can only bloat the bound onℙ(Bi) by a factor
of at most e. This is roughly because only d of the conditions “matter”.
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We show the claim by induction on the number of conditions. Assume, by proper renaming,
that Bi is mutually independent with Bd+1, . . . ,Bi−1. Let us realise the conditions in two
steps: First condition on the “irrelevant” part Bd+1∩ ⋅ ⋅ ⋅ ∩Bi−1, and then impose the extra
condition B1∩ ⋅ ⋅ ⋅ ∩Bd. In formula,

ℙ(Bi ∣B1∩ ⋅ ⋅ ⋅ ∩Bi−1)=
ℙ(Bi∩B1∩ ⋅ ⋅ ⋅ ∩Bd ∣ Bd+1∩ ⋅ ⋅ ⋅ ∩Bi−1)
ℙ(B1∩ ⋅ ⋅ ⋅ ∩Bd ∣ Bd+1∩ ⋅ ⋅ ⋅ ∩Bi−1)

.

Its numerator is at most
ℙ(Bi ∣Bd+1∩ ⋅ ⋅ ⋅ ∩Bi−1)=ℙ(Bi)<

1
e(d+1)

by assumption. And its denominator is, using chain rule,

�
j=1

d
ℙ(Bj ∣ B1∩ ⋅ ⋅ ⋅ ∩Bj−1∩Bd+1∩ ⋅ ⋅ ⋅ ∩Bi−1)>�1− 1

d+1�
d
> 1e

where the first inequality follows from induction hypothesis. Taking their quotient completes
the induction of the claim and finishes the lemma. □

3.1 Two-Colourability of Hypergraphs
Lemma. If G=(V,E) is a k-uniform hypergraph where every edge intersects at most d⩽
e−12k−1−1 other edges, then G is two-colourable.

Proof. We 2-colour each vertex in G uniformly and independently. Let Be be the event that
edge e is monochromatic. Then Be is independent with all events Be′ unless e∩e′≠∅; thus the
level of dependency is d. Since ℙ(Be)=21−k⩽ 1

e(d+1) , Lovász local lemma applies and shows
the existence of a proper 2-colouring. □

3.2 Directed Cycles Modulo d
Theorem. Any Δ-regular digraph contains a directed cycle of length divisible by d, provided
d⩽ Δ

2log(Δ+1) .

Proof. Take G=(V,E) to be any Δ-regular digraph. We sample a colouring 𝜎 :V→ℤd uni-
formly at random and define a subgraph H≔(V,F), where F≔{uv∈E :𝜎(u)+1=𝜎(v)}. We
claim that degH

+(u)>0 for all u∈V with positive probability. Note that it would imply the
existence of a cycle isomorphic to ℤd: Just start from any vertex and follow the F-edges until
hitting a vertex visited before.

Now it remains to prove the claim. For each vertex u∈V we associate a bad event Bu≔
{degH

+(u)=0}. It relies on, and only on, the colours 𝜎(v) for v∈NG
+(u)∪{u}. Therefore, Bu is

independent with all other Bu′ unless NG
+(u)∪{u} and NG

+(u′)∪{u′} intersect. So the level
of dependency is at most Δ(Δ+1). On the other hand,

ℙ(Bu)=�1− 1d�
Δ
<e−2log(Δ+1)< 1

e[Δ(Δ+1)+1],

so we may apply Lovász local lemma to conclude. □

3.3 Linear Forest Decomposition
A forest is linear if all its constituents are paths. Given a graph G=(V,E) with maximum
degreeΔ, we want to partition its edges into a small number of linear forests: E=F1∪⋅⋅⋅∪Ft.
How small can t be?
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An easy lower bound is supplied by t⩾�Δ2 �, since every linear forest can cover at most two
incident edges to a Δ-degree vertex. When G is Δ-regular, we actually need t⩾�Δ+12 �, since
each forest can consume up to n −1 edges out of a total of nΔ

2 edges.

Linear Arboricity Conjecture. Any graph with maximum degreeΔ can be partitioned into
t⩽�Δ+12 � linear forests.

The conjecture remains open to date. But a fruitful direction looks into its directed variant.
Let us call a directed forest linear if its constituents are directed paths.

Conjecture. Any Δ-regular digraph can be partitioned into Δ+1 linear directed forests.

This latter conjecture implies the linear arboricity conjecture for even Δ:
1. Given a graph G with even maximum degree Δ, we “complete” it into a Δ-regular

supergraph as follows. Whenever a vertex v has deg(v)⩽Δ − 2, we create two com-
panion vertices v1,v2 and a KΔ−2. Each vi (i=1,2) is connected with v and all vertices
in the KΔ−2. The operation increases deg(v) by two, yet all the new vertices have degree
Δ. Eventually every vertex would have degree Δ−1 or Δ. Then we double the graph
and connect those vertices with degree Δ−1 in pairs.

2. Now we have a Δ-regular graph. Since Δ is even, we can find an Eulerian tour and
orient the edges accordingly, and get a ( /Δ 2)-regular digraph. We apply the latter con-
jecture to partition it into Δ

2 +1=�
Δ+1
2 � directed linear forests. They of course induce

the same amount of linear forests in the original graph G.
It turns out the latter conjecture is quite close to a full resolution:

Theorem. Any Δ-regular digraph G=(V,E) with girth(G)⩾ 4eΔ can be partitioned into
Δ+1 linear directed forests.

Proof. First we partition E=𝒞1∪⋅⋅⋅∪𝒞Δ where each𝒞i is a cycle cover. This is a consequence
of Hall's theorem. Consider a bipartite graph with one copy of V on each side, where we
connect the left-u to the right-v iff uv∈E. Clearly the bipartite graph is Δ-regular, so Hall's
theorem guarantees a perfect matching, which corresponds to a cycle cover of the digraph.
We remove these edges and repeat the procedure (on the regular subgraph). Eventually we
shall partition the entire edge set E into cycle covers 𝒞1, . . . ,𝒞Δ. We collect all these cycles
into 𝒞≔⋃i=1

Δ 𝒞i. Keep in mind that every edge is covered exactly once.
Next we will “break” all cycles into paths by one “cut”, thereby producing linear forests.

Recall that each cycle C∈𝒞 contains at least girth(G)⩾4eΔ edges. For our argument we
assume that it contains exactly 4 eΔ; otherwise we just ignore the extra. Choose one edge
from C uniformly at random. Do this independently for all cycles. We claim that F, the set of
chosen edges, is a matching with positive probability. The theorem would immediately follow
since F, (𝒞1\F), . . . , (𝒞Δ\F) partitions E into Δ+1 linear forests.

In order to show the claim, for every pair of incident edges e, f ∈E that belong to different
cycles, define a bad event Bef ≔{e, f ∈F}. Note that

ℙ(F is a matching)=ℙ((((((((((((((�e,f Bef)))))))))))))).
Let us analyse the dependency of these events. Assume e∈C and f ∈D, then Bef is only
related to the events Be′f ′ where e′ ∈C∪D or f ′ ∈C∪D. In the first case there are |C∪
D| ⩽ 8 eΔ choices for e′ and then at most Δ choices for an incident f ′, thus amounting to
8 eΔ2 combinations. A symmetric calculation works for the second case. Therefore, Bef is
indepedent of all but at most d≔16eΔ2−1 other events (where the minus 1 excludes itself).

Since ℙ(Bef)= 1
(4eΔ)2 =

1
16e2Δ2 ⩽

1
e(d+1) , the claim is established by Lovász local lemma. □
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Chapter 4
Probability Bounds via Correlation
Locality is not always present in combinatorial problems. Think of events �𝜒(G)⩾ 5� and
{G is Hamiltonian} in the random graph model G∼G(n, p) that are notoriously global and
tricky to handle. Still they seem to be positively correlated, in the sense that both a high chro-
matic number and the existence of Hamiltonian cycles “favour” dense graphs. Intuitively,
the probability that the two events happen simultaneously should be larger than the product
probability that each happens individually.

Prior to a formal proof, let us reflect on the notion of “positive correlation”. Why do we feel
that two random variables (or events) f and g are positively correlated? One thesis is that
the underlying probability space is partially ordered, and both f and g respect that order. So
when we go up in the probability space, the values of f and g shall increase. This creates an
illusion that the variables are working synchronously.

In the random graph example, the partial order is the “supergraph relation”, respected by
both events �𝜒(G)⩾5� and {G is Hamiltonian}.

Now we work our way to a formal proof. First we consider one-dimensional and totally
ordered probability space. Then we will generalise to product space where each dimension is
totally ordered. (That includes the random graph model.)

Chebyshev's Sum Inequality. Let x be any random variable, and f , g :ℝ→ℝ be increasing
functions. Then 𝔼[f(x) g(x)]⩾𝔼[f(x)] ⋅𝔼[g(x)].

Proof. By monotonicity we have (f(a)− f(b)) ⋅(g(a)− g(b))⩾0 for all a,b∈ℝ. Let us sample
independent a,b as distributed as x. Then

0 ⩽ 𝔼[(f(a)− f(b)) ⋅ (g(a)− g(b))]
= 𝔼[f(a) g(a)]+𝔼[f(b) g(b)]−𝔼[f(a)] ⋅𝔼[g(b)]−𝔼[f(b)] ⋅𝔼[g(a)]
= 2 ⋅𝔼[f(x) g(x)]−2 ⋅𝔼[f(x)] ⋅𝔼[g(x)]

and the claim follows. □

FKG Inequality. Let 𝒙≔(x1,...,xn) be independent random variables. Suppose f , g :ℝn→ℝ
are coordinate-wise increasing functions. Then 𝔼[f(𝒙) g(𝒙)]⩾𝔼[f(𝒙)] ⋅𝔼[g(𝒙)].

Proof. By induction on n. The base case n=1 is simply Chebyshev's sum inequality. For the
induction step, let us consider n+1 independent variables (𝒙, y)=(x1,...,xn, y) and condition
on y. Both functions 𝒙↦ f(𝒙, y) and 𝒙↦ g(𝒙, y) are coordinate-wise increasing on ℝn, so by
induction hypothesis we have

𝔼
𝒙
[f(𝒙, y) g(𝒙, y) ∣ y] ⩾ 𝔼

𝒙
[f(𝒙, y) ∣ y] ⋅𝔼

𝒙
[g(𝒙, y) ∣ y]

≔𝜑(y)𝛾(y).

Observe that 𝜑,𝛾 :ℝ→ℝ are increasing due to monotonicity of f , g and independence of the
variables. Independence is crucial because otherwise the conditional space of 𝒙 shall depend
on y, making the conditional expectations incomparable across different y's.
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Finally, we take expectation over y and derive

𝔼[f(𝒙, y) g(𝒙, y)] = 𝔼
y
�𝔼
𝒙
[f(𝒙, y) g(𝒙, y) ∣ y]�

⩾ 𝔼
y
[𝜑(y)𝛾(y)]

⩾ 𝔼
y
[𝜑(y)] ⋅𝔼

y
[𝛾(y)]

= 𝔼[f(𝒙, y)] ⋅𝔼[g(𝒙, y)]

where the third line is, again, due to Chebyshev's sum inequality. □

Corollary. Let 𝒙 ≔ (x1, . . . , xn) be independent random variables. Suppose A,B⊆ℝn are
upward closed sets. That is, if 𝒂∈A then every 𝒂′⩾𝒂 are contained in A as well; similar for
B. Then ℙ(𝒙∈A∩B)⩾ℙ(𝒙∈A) ⋅ℙ(𝒙∈B).

Proof. Take indicator functions f(𝒙)≔1{𝒙∈ A} and g(𝒙)≔1{𝒙∈B}. Both are coordinate-
wise increasing since A,B are upward closed. □

There are several remarks in order:
• The FKG inequality (and its corollary) inductively applies to more than two functions

(events), since the product of two increasing functions is still increasing.
• Nothing will break if both functions are decreasing—just turn the partial order upside

down! On the other hand, if one function is increasing whereas the other is decreasing,
then the inequality shall change direction.

Can we further generalise to any partially ordered space that are not necessarily product
space? Both yes and no: there is a generalisation to distributive lattices equipped with log-
supermodular probability measure; but not beyond.

4.1 Random Graphs Properties
Applying the corollary, our intuition that

ℙ�𝜒(G)⩾5 and G is Hamiltonian�⩾ℙ�𝜒(G)⩾5� ⋅ℙ(G is Hamiltonian)

is true for G∼G(n, p).

4.2 Intersecting Systems
Recall that𝒜={A1,...,Am} is an intersecting system if it contains pairwise intersecting sets.
Denote 𝒜′≔{A1, . . . ,Am}.

Theorem. Assume 𝒜⊆2[n]. If both 𝒜 and 𝒜 are intersecting systems, then |𝒜|⩽2n−2.

Proof. Letℬ and𝒞 be the upward and downward closures of𝒜, respectively. Observe that
ℬ is an intersecting system as 𝒜 is. Similarly, 𝒞′ is an intersecting system as 𝒜′ is.

Now we sample a random set S⊆[n] by including each element independently with prob-
ability /1 2. Clearly S is uniformly distributed over all subsets of [n]. We have ℙ(S∈ℬ)=
|ℬ|/2n⩽ /1 2, and ℙ(S∈𝒞)=ℙ(S∈𝒞′)=|𝒞′|/2n⩽ /1 2. Note that the event {S∈ℬ} is upward
closed (with regard to the product space), whereas the event {S∈𝒞} is downward closed. So
by the corollary we know

ℙ(S∈𝒜)=ℙ(S∈ℬ∩𝒞)⩽ℙ(S∈ℬ)⋅ℙ(S∈𝒞)⩽ 14.

This immediately translates to |𝒜|⩽2n/4. □

20 PROBABILITY BOUNDS VIA CORRELATION



Chapter 5
Expectation: Beyond Probability
It is not uncommon that we fail to obtain decent probability estimate after all. Expectation
comes to aid: If a random variable has expectation t, then there must exist an outcome in
which the variable evaluates to ⩽t, as well as an outcome in which it evaluates to ⩾t. They
are sufficient for existential proofs, even though the probability that such outcomes occur is
unknown or potentially very small.

5.1 Sets without Sum Capture

Theorem. For any finite A⊆ℤ\{0}, there exists a subset B⊆A of size |B|> |A|/3 free from
sum capture, i.e. b+b′≠b′′ for all b,b′,b′′∈B.

Proof. Take prime p>2maxa∈A |a| so that we may treat A⊆ℤp
∗. Define I≔�p

3 ,
2 p
3 �, which is a

set without sum capture. Consider the random set B≔A∩r I for a uniformly sampled r∈ℤp
∗

where we performed the multiplication modulo p. Observe that r I, thus also B, are free from
sum capture because r is invertible.

What is the expected size of B? For any fixed element a∈A we have

ℙ(a∈ r I)=ℙ(r∈aI−1)= |I |
p −1 >

1
3.

So 𝔼(|B|)> |A|/3, meaning that there is a desired B of size at least |A|/3. □

5.2 Independence Number

Any graph on n vertices with maximum degreeΔ has an independent set of size n
Δ+1 . We can

construct it by iteratively picking a vertex v and deleting v∪N(v) from the graph.
However, if the graph contains only a few high-degree vertices, the bound is a gross under-

estimate. In such cases the average degree would be a more robust parameter.

Lemma. If G=(V,E) has n vertices and average degree d, then 𝛼(G)⩾ n
2d .

Proof. Define a random set S⊆V by independently including each vertex v∈V with probab-
ility p≔1/d. Let F≔{uv∈E :u,v∈S} collect all the “conflicting” edges. For each e∈F we
remove one of its two ends from S so that the conflict is resolved. Let S′ be the set S after the
removal. Clearly it is an indepedent set of size |S′|⩾ |S|− |F|. Since

𝔼(|S′|)⩾𝔼(|S|)−𝔼(|F|)=np −m p2= n
d − n

2d =
n
2d ,

there must be an independent set of that size. □
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It might be worth mentioning a deterministic argument for a weaker bound. Let U ⊆V
collect all vertices with degree less than 2d. Observe that |U | ⩾n/2, for otherwise the total
degree would exceed (n/2) ⋅ (2d)=n d which contradicts the average degree. Now we could
find an independent set of size |U|

2d ⩾
n
4d of the induced subgraph G[U] by the deterministic

procedure; it is also an independent set of G.
Arguably, the expectation approach is more powerful as it adapts to the graph stochastic-

ally. Let us take a closer look. The first half of the proof samples a standard random set
regardless of the graph structure. The 𝔼(|F|) can be viewed as a union bound of the prob-
ability that “there is a conflicting edge”. Well, this is at most m p2, which is useless from a
probability aspect. In fact, deriving a good probability bound might just be out of current
reach. The ingenuity and power comes at the second half where we admit and remove those
blemishes. This half heavily depends on F and thus the graph structure, and the output S′ is
highly customised. We basically understand nothing but the expectation 𝔼(|S′|); fortunately
that is enough for an existential proof.

Using a suitably crafted probability space, we can gain finer control in the bound.

Lemma. Any graph G=(V,E) satisfies 𝛼(G)⩾∑v∈V
1

deg(v)+1 .

Proof. Put a uniform random value Xv∈ [0, 1] on each vertex v∈V, independent of each
other. Define S≔{v∈V :∀uv∈E,Xu>Xv}, namely the vertices whose values are locally min-
imal. By definition S is an indepedent set. Moreover𝔼(|S|)=∑v∈V𝔼(Xv)=∑v∈V

1
deg(v)+1 . □

It directly implies the famous Turán theorem:

Corollary. If graph G=(V,E) has n vertices and m edges, then 𝛼(G)⩾ n2
2m+n .

Proof. Denote av≔ deg(v)+1� . By Cauchy-Schwarz, we have

((((((((((((((�v∈V
av
2))))))))))))))((((((((((((((((�v∈V

1
av
2))))))))))))))))⩾((((((((((((((((�v∈V

av ⋅
1
av))))))))))))))))

2
.

or just

(2m+n)((((((((((((((((�v∈V

1
deg(v)+1))))))))))))))))⩾n2.

Therefore

𝛼(G)⩾((((((((((((((((�v∈V

1
deg(v)+1))))))))))))))))⩾

n2
2m+n . □

As a remark, the bound is tight for the complement of Turán graphs. Basically these are
just n

d+1 copies of Kd+1 where d≔2m/n is the average degree. Some rounding details arise
when the numbers are not integers, but we shall leave them out.

One naturally asks what happens if we ban certain dense substructure in the graph. For
example, if we disallow occurrence of triangles, thereby forbidding cliques and so on, can we
improve the bound on 𝛼(G)?

Theorem. If a triangle-free graph G=(V,E) has n vertices and maximum degree Δ, then
𝛼(G)> n logΔ

4Δ .

Proof. Let I⊆V be a uniformly random independent set of G; we will show that𝔼(|I |)> n logΔ
4Δ .

For each vertex v∈V we define random variables

Xv ≔ 1{v∈ I}
Yv ≔ |N(v)∩ I |=�

u∈I
1{uv∈E}

Zv ≔ Xv+
Yv
Δ .
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Basically Zv counts the contribution of neighbourhood {v}∪N(v), where 1/Δ factor neut-
ralises repeating counts. This two-part complication is beneficial because it balances the
contention between v and N(v), which allows us to apply a “meet in the middle” argument
later. For now, observe that

�
v∈V

Zv=�
v∈V

Xv+
∑v∈V Yv

Δ =|I |+
∑u∈I deg(u)

Δ ⩽2 |I |,

so it suffices to lower bound 𝔼(Zv)> logΔ
4Δ for each individual v∈V.

Fix a vertex v. Define subset J≔ I \({v}∪N(v)) to capture the far-away region. What
is the conditional expectation 𝔼(Xv ∣ J)? Under the condition, it remains to expose which
vertices in {v}∪N(v) are selected by I. We can
• either choose v but none of its neighbours;
• or choose any subset of N(v)\N(J) but not v.

Note that the second option allows any subset because the graph is triangle-free and thus all
neighbours are non-adjacent.

There are 1+2|N(v)\N(J)| ≔1+2s possibilities in total, all happening with equal probability.
Therefore

𝔼(Xv ∣J)=
1

1+2s⩾
1
2s+1

and

𝔼(Yv ∣J) = 𝔼(Yv ∣v∈ I,J) ⋅ℙ(v∈ I ∣J)+𝔼(Yv ∣v∉ I,J) ⋅ℙ(v∉ I ∣J)
= 0 ⋅ 1

1+2s +
s
2 ⋅

2s

1+2s

⩾ s
4.

They together imply
𝔼(Zv ∣J)⩾

1
2s+1 +

s
4Δ ≔f(s).

Notice that f(s+1)− f(s)= 1
4 �

1
Δ − 1

2s�, so f is initially decreasing and then increasing. Its
minimum is attained when s= logΔ, with value 2+logΔ

4Δ . This means 𝔼(Zv ∣J)> logΔ
4Δ under

any condition J. Hence 𝔼(Zv)> logΔ
4Δ . □

5.3 Large Girth and Chromatic Number
Large girth means that the graph has a locally tree structure, and trees have chromatic
number 2. It seems plausible to conjecture that large girth implies small chromatic number.
Surprisingly, the intuition is very wrong, and long-term correlations do exist:

Theorem. For any g, c∈ℕ, there is a graph G with girth(G)> g yet 𝜒(G)> c.

Proof. Sample G∼G(n, p) where p≔n1/(2g)−1. We shall show that G contains very few short
cycles, but at the same time has small independence number. Once we establish that, we
could remove one vertex from each short cycle to enforce a high girth, yet not increasing the
independence number. Finally we can use the well-known relation 𝜒(G)⩾ |V(G)|/𝛼(G) to
conclude the proof.

We start off by analysing the number of short cycles. Let Nl count the number of cycles of
length l in graph G. Clearly

𝔼(((((((((((((((( �3⩽l⩽g
Nl))))))))))))))))= �

3⩽l⩽g

n(n−1) ⋅ ⋅ ⋅ (n− l+1)
2 l! pl< g ⋅ (n p)l⩽ g n√ .
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So with high probability, the total number of short cycles is smaller than, say, n/2.
Next we analyse the independence number. The probability that a U ⊆V : |U | =n/(2 c)

forms an independent set in G is

(1− p)�
n/(2c)
2 �⩽exp�−p�n/(2c)

2 ��<exp((((((((((((−n1+1/(2g)

16 c2 ))))))))))))
for sufficiently large n. By a union bound over all U , we have

ℙ(𝛼⩾n/(2c))<� n
n/(2c)� ⋅exp((((((((((((−n1+1/(2g)

16 c2 ))))))))))))<2n ⋅ exp((((((((((((−n1+1/(2g)

16c2 ))))))))))))→0.
To summarise, with high probability the random graph G has less than n/2 short cycles

and, at the same time, independence number 𝛼(G)<n/(2c). Now we may remove one vertex
for each short cycle, resulting in a graph G′ such that girth(G′) > g and 𝛼(G′) ⩽ 𝛼(G)<
n/(2c). The latter bound implies 𝜒(G′)⩾(n −n/2)/𝛼(G′)> c. □

5.4 Sharing Neighbours
For graph G=(V,E) and subset R⊆V, let us denote the common neighbours of vertices in R
as Com(R)≔⋂v∈R NG(v). Note that R⊆Com(Com(R)).

Theorem. Let r,s∈ℕ be any given parameters. In any graph G=(V,E)with average degree
at least d, it is possible to find a “large” subset U⊆V such that
• every R∈ �U

r� satisfies |Com(R)|> s;
• |U |⩾n�d

n�
t − �n

r� ⋅ �
s
n�

t for all t∈ℕ.

Proof. Sample vertices v1, . . . , vt∈V independently and uniformly. Consider their common
neighbours U≔Com{v1, . . . ,vt}. This U is almost what we are looking for. Let us calculate

𝔼(|U |) = �
v∈V

ℙ(v∈U)

= �
v∈V

�deg(v)n �
t

= n1−t ⋅
∑v∈V (deg(v))

t

n

⩾ n1−t ⋅((((((((((((((
∑v∈V deg(v)

n ))))))))))))))
t

= n ⋅�d
n�

t

where we used Jensen's inequality on the convex function x↦xt.
But there could be a few bad subsets in U that violate the first property. Next we bound

the expected number of them. Fix any “potentially bad” subset R∈�V
r� such that |Com(R)|⩽s.

If the bad event {R⊆U} happens, then {v1,...,vt}⊆Com(U)⊆Com(R); in other words, every
vertex vi must have landed in Com(R), a set of size ⩽s. Therefore ℙ(R⊆U)⩽(s/n)t and

𝔼(#bad R)⩽�n
r�⋅�

s
n�

t.

Finally, we modify the set U by deleting one vertex from each bad R. After this step, the
new U does not include any R∈ �V

r� : |Com(R)|⩽ s, so the first property is satisfied. On the
other hand 𝔼(|U |) ⩾ n �d

n�
t − �n

r� ⋅ �
s
n�

t, so the second property also holds. This proves the
existence of the desired object. □
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Corollary. Let A⊎B be a bipartite graph where all vertices in B have degree ⩽r. Then we
may embed it into any graph G on n vertices of average degree d such that

n�d
n�

t
−�n

r� ⋅�
|A|+ |B|

n �
t
⩾|A|

for some t∈ℕ.

Proof. Take a U ⊆V=V(G) provided by the theorem with parameters r and s≔|A|+ |B|, so
that |U |⩾ |A| by assumption.

We will incrementally build an embedding 𝛾 : A⊎B→V. For each a∈ A we injectively
assign a vertex 𝛾(a)∈U . Then, for each remaining vertex b∈B, we consider the set

R≔{𝛾(a) :a∈NH(b)}⊆U ,

namely the image of its neighbourhood. By assumption |R|⩽ r. Applying the property of U ,
we know |Com(R)|> |A| + |B|, so there is some vacant vertex in Com(R) not yet embedded.
We may simply take it as 𝛾(b). □
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Appendix A
Permanents of 0-1 Matrices
Let A∈ {0, 1}n×n be a binary matrix, and denote ri to be the number of ones in row i. A
trivial upper bound for permanent is PerA⩽∏i=1

n ri, but it neglects the interactions between
different rows. The Minc-Bregman inequality adds that back into the picture:

Theorem. PerA⩽∏i=1
n (ri!)1/ri. The bound is tight for any block diagonal matrix where each

block is an all-one square matrix.

Proof. Let Sn collect all permutations of [n]. Define Sn
+≔{𝜋∈Sn :∏i=1

n ai,𝜋(i)=1} to be all
permutations that contribute to the permanent. We build a randomised estimator of PerA:
• Sample a uniform order 𝜎∈Sn;
• Sample a uniform 𝜋∈Sn

+;
• Process the rows one by one, as specified by the order 𝜎. At step i we look at row 𝜎(i).

We use the random variable R𝜎(i) to record the number of (remaining) ones in this row.
Then we remove column 𝜏(i)≔𝜋(𝜎(i)) from the matrix, which crudely simulates the
interaction between different rows.

• Our estimate is just N ≔∏i=1
n R𝜎(i)=∏i=1

n Ri, which can be seen as a randomised,
adaptive version of the trivial estimate.

Depending on the choices of 𝜎,𝜋, the estimate N may vary a great deal, but on average
it is an overestimate—which is no surprise at all. To get the idea, fix any order 𝜎 and con-
sider what was done in the first step: We looked into row 𝜎(1), and selected one random
branch 𝜋(𝜎(i)) to expand the permanent. We did not explore other branches; we just treated
them all the same as our selected branch, and multiplied our sub-estimate by the number of
branches, R𝜎(1). Now, if we did select each branch with equal probability, then the estimate
should be unbiased. However, since we specified 𝜋∈Sn

+, our selection is biased towards a
branch with heavier sub-determinant, so we must have overestimated overall.

More formally, we claim that
𝔼(logN)⩾ log(PerA).

We prove this by gradual conditioning. Conditional on 𝜎(1) and 𝜏(1), namely the first row
that we inspect and the column that we remove, we can calculate

𝔼[logN ∣ 𝜎(1),𝜏(1)]=log(r𝜎(1))+𝔼(logN′).

Here N′ is the random estimator of PerA𝜏(1), for A𝜏(1) being A without row 𝜎(1) and column
𝜏(1). By induction we assume 𝔼(logN′)⩾log(PerA𝜏(1)), thus

𝔼[logN ∣ 𝜎(1),𝜏(1)]⩾log(r𝜎(1))+log(PerA𝜏(1)).

Next we take expectation over 𝜏(1) (which is independent of 𝜎(1)). The key observation is
that ℙ(𝜏(1)= j)= Per Aj

Per A due to our uniform sampling 𝜋∈Sn
+. Therefore,

𝔼[logN ∣ 𝜎(1)] ⩾ log(r𝜎(1))+ �
j:PerAj>0

PerAj
PerA log(PerAj)

= log(r𝜎(1))+ log(PerA)+ �
j:PerAj>0

PerAj
PerA log�PerAj

PerA �

⩾ log(r𝜎(1))+ log(PerA)− log(r𝜎(1))
= log(PerA).
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The third line is due to the entropy inequality on support size ⩽r𝜎(1). Finally, taking expect-
ation over 𝜎(1) establishes the claim.

The remaining proof is easy as we could calculate𝔼(logN)=∑i=1
n 𝔼(logRi) explicitly. Let

us condition on 𝜋. For any row i∈[n] (which contains ri−1 ones excluding the one at column
𝜋(i)), there are exactly other ri −1 rows that, whenever processed earilier than row i, would
“kill” a one in row i due to column removal. Hence Ri= ri − d+1 iff row i is processed at the
d-th position among these ri rows. So the distribution of Ri is just uniform over [ri], and

𝔼(logRi ∣𝜋)=�
k=1

ri 1
ri
⋅ logk= log(ri!)

ri
.

Taking expectation over 𝜋 shows 𝔼(logRi)= log(ri)!
ri

, and consequently

log(PerA)⩽𝔼(logN)=�
i=1

n
log(ri)!

ri
.

Bringing both sides to the exponent finishes the proof. □
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Appendix B
Random Graph G(n, /12)
The random graph model G(n, /1 2) is a central figure in random graph theory as it uniformly
produces a graph on n vertices. This appendix studies two important parameters of random
graph G∼G(n, /1 2): its independence number 𝛼(G) and chromatic number 𝜒(G).

B.1 Independence number
Let Zi count the number of independent sets of size i in G. Denote

𝜇i≔𝔼(Zi)=�n
i�2

−�i
2�.

Note that
𝜇i+1
𝜇i

= n− i
i+1 ⋅2

−i,

so the sequence (𝜇i)0⩽i⩽n is first increasing and then decreasing, with the “turning point”
roughly at i≈logn.

Theorem. There exists some i⋆≈2logn such that 𝛼(G)∈{i⋆−1, i⋆} with high probability. In
other words, the independence number of G concentrates within two points!

Proof. Let i⋆ be the largest integer such that 𝜇i⋆ stays above n−1/2. One may easily find i⋆=
(1+o(1))2 logn, and in this region the sequence depreciates by about 1/n in each step. We
thus have

𝜇i⋆ ⩾ n−1/2

𝜇i⋆+1 < n−1/2

𝜇i⋆−1 ≳ n1/2.

Next we apply the standard second-moment method. On one hand 𝜇i⋆+1→0, so with high
probability Zi⋆+1=0. On the other hand 𝜇i⋆−1→∞, so if we managed to show

Var(Zi⋆−1)
𝜇i⋆−1
2 →0, (B.1)

then Zi⋆−1>0 with high probability. Combining the two parts, we can conclude that 𝛼(G)∈
{i⋆−1, i⋆} with high probability.

It remains to establish (B.1). Denote i≔ i⋆−1 for convenience. Decompose Zi=∑S∈�V
i�

XS
where XS indicates if S forms an independent set. We calculate

Var(Zi) < �
S,T
𝔼(XS XT)

= 𝜇i+ �
2⩽|S∩T |⩽i−1

𝔼(XS XT)

= 𝜇i+�
j=2

i−1

�n
i��

i
j��

n− i
i − j�2

−2�i
2�+�

j
2�,

29



hence
Var(Zi)
𝜇i
2 < 1

𝜇i
+�

j=2

i−1 �i
j��

n − i
i− j�

�n
i�

2�
j
2�.

Put fj≔2
� j
2� �i

j��
n − i
i− j�/�

n
i� and compute

fj+1
fj
= (i − j)2
( j+1)(n−2 i+ j+1) ⋅2

j,

thus the fj first decreases and then increases. The maximum value is attained at the bound-
aries j=2 and j= i −1. With careful computation we can bound fj⩽O(1/n). So

Var(Zi)
𝜇i
2 =o(1)+O(logn) ⋅O�1n�→0

which is as we wanted. □

In fact we can prove very sharp probability bound (specifically, exponential instead of poly-
nomial decay) by replacing the second moment method with a smart application of Azuma's
inequality.

Lemma. Let i be the largest integer such that 𝜇i⩾n3; note that i≈2 logn again. We have
ℙ(𝛼(G)< i)⩽exp(−n2−o(1)).

Proof. We say a collection ℐ of sets is even if |I∩J| ⩽ 1 for all distinct I,J∈ℐ. Let random
variable X record the cardinality of a largest even collection of size-i independent sets in G.
Apparently ℙ(𝛼(G)< i)=ℙ(X=0). We will upper bound the latter by Azuma's inequality.

First of all, observe that X is 1-Lipschitz with respect to edge exposure. Indeed,
(a) X is monotonically decreasing with edge insertion.
(b) Assume ℐ is a largest even collection of size-i independent sets in G. Now we add an

arbitrary edge uv to G. Any I∈ℐ containing both u and v is no longer independent in
the new graph. Fortunately there could be at most one such I because ℐ is even. So
ℐ\{I} forms a (not necessarily largest) even collection of size-i independent sets in the
new graph. This means that the value X can drop by at most 1.

Hence we may apply Azuma's inequality to obtain

ℙ(X=0)⩽exp((((((((((((((−𝔼2(X)
2�n

2� ))))))))))))))⩽exp(((((((((
−𝔼2(X)

n2 ))))))))).
It remains to lower bound 𝔼(X) by roughly n2. To this end, we cleverly produce a specific

even collection ℐ of size-i independent sets, and use its cardinality as a lower bound for X.
• Initialise ℐ as the collection of all size-i independent sets.
• Keep each I∈ℐ independently with probability q (to be specified later).
• Whenever there still exist distinct I,J∈ℐ such that |I∩J|⩾2, remove I from ℐ.

Upon termination of the procedure, the ℐ is indeed even. We analyse its cardinality below.
Let N count the pairs of size-i independent sets {I,J} in G such that |I∩J|⩾ 2. Then by

definition,
𝔼(|ℐ| ∣G)=qZi − q2N

where the randomness originates from the procedure itself. (Under condition G, both Zi and
N are just constants.) Therefore,

𝔼(X)⩾𝔼(|ℐ|) = q𝔼(Zi)− q2𝔼(N)
= q𝜇i − q2𝔼(N)

= 𝜇i
2

4𝔼(N) (B.2)
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with parameter q≔ 𝜇i

2𝔼(N) . It will soon become clear that q∈(0,1).
Computing 𝔼(N) exactly follows the second-moment calculation before. One can derive

𝔼(N)= 𝜇i
2

2 �
j=2

i−1 �i
j� �

n − i
i− j�

�n
i�

2�
j
2�⩾Ω(n6)Ω(((((((((log

4n
n2 )))))))))=Ω((n logn)4)≫𝜇i

which means q∈(0,1) indeed. Plugging the expression for 𝔼(N) into (B.2), one can bound

𝔼(X)⩾((((((((((((((((((
(
(
(2�

j=2

i−1 �i
j��

n − i
i− j�

�n
i�

2�
j
2�))))))))))))))))))
)
)
)−1

⩾(1− o(1)) n2
log5n ,

thus finishing the proof. □

B.2 Chromatic number
Unlike the independence number, the chromatic number is a much more complicated creature
due to its lack of locality. We shall study it through the well-known connection

n
𝛼(G) ⩽𝜒(G)⩽1+n−𝛼(G).

It might be instructive to mention the proofs. For the left-hand side, note that any optimal
proper colouring partitions the vertices into 𝜒(G) independent sets, each one having size at
most 𝛼(G), hence n⩽𝜒(G)𝛼(G). For the right-hand side, we can paint a maximum inde-
pendent set by one colour, and the rest of vertices by distinct colours, thus producing a proper
(1+n −𝛼(G))-colouring.

By the concentration of 𝛼(G), we immediately have

(1− o(1)) n
2logn ⩽𝜒(G)⩽1+n −(1+o(1))2 logn

with high probability. The upper bound is far from decent though. Can we strengthen it to
something comparable to the lower bound? Here is our “dream proof”: repeatedly pull out a
maximum independent set from the remaining graph and paint it by a new colour, until the
graph becomes empty (or until the graph contains few vertices so that we may colour them
distinctly). In other words,

1. pull out an I1⊆V(G) of size 𝛼(G);
2. pull out an I2⊆V(G − I1) of size 𝛼(G − I1);
3. pull out an I3⊆V(G − I1− I2) of size 𝛼(G − I1− I2);
4. .. .

If we managed to show that 𝛼(G − I1),𝛼(G − I1− I2), . . . are relatively close to 𝛼(G)≈2 logn,
then the procedure should terminate in about n

2log n steps, thus witnessing a proper colouring
of that size.

In fact our dream can readily come true, given the sharp lemma in the previous section.

Lemma. 𝜒(G)⩽(1+o(1)) n
2log n with high probability.

Proof. Denote n′ ≔ n/log2 n. For any subset U ∈ �V(G)
n′ �, the induced subgraph G[U] is a

sample from model G(n′, 1/2), hence

ℙ(𝛼(G[U])< i)⩽exp(−n2−o(1))

for some i≈2 logn′ ≈2 logn by the lemma in the previous section. Applying a union bound
over all subsets U , we conclude with high probability that 𝛼(G[U])⩾ i for all U∈ �V(G)

n′ �.
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Once this happens, we can repeatedly pull out independent sets of size ⩾i until there are
less than n′ vertices left. We colour all the remaining vertices by distinct colours. Overall

𝜒(G)⩽ n
i +n′=(1+o(1)) n

2logn . □

Corollary. 𝜒(G)=(1+o(1)) n
2log n with high probability.
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