
Secure Multi-Party Computation
Yanheng Wang

Table of contents

1 Preliminaries . 2

1.1 Goals . 2
1.2 Polynomials . 2
1.3 Lagrange interpolation . 3

2 Passive MPC . 4

2.1 Shamir sharing . 4
2.2 Computation . 5
2.3 Passive security . 7

3 Broadcast and Consensus . 8

3.1 Without setup . 8
3.2 With setup . 10

4 Active MPC . 12

4.1 Commitment Function . 12
4.2 Committed sharing . 13
4.3 State tracking . 14
4.4 Strengthening* . 16

5 Efficiency . 17

5.1 Hyperinvertible map . 17
5.2 Faster passive MPC . 18
5.3 Faster active MPC . 18

6 Asynchronous Broadcast and Consensus . 22

6.1 The asynchronous model . 22
6.2 Asynchronous broadcast . 22
6.3 Asynchronous consensus: first version . 23
6.4 Asynchronous consensus: second version . 25

7 Asynchronous MPC . 27

7.1 A new distribution protocol . 27
7.2 Finding core set . 28
7.3 A new refill protocol . 29
7.4 Debate of the model . 29

1

1 Preliminaries

1.1 Goals
Suppose n players f1; : : : ; ng live in a network where every pair can communicate directly.
Each player i holds a private input xi2F at the outset. The players cooperate in a protocol
that computes y := '(x1; : : : ; xn) for a prescribed function ':Fn!F. The setting is called
multi-party computation, or MPC for short.

Sounds trivial, isn't it? Yes, now comes the complication: some players in the game may
be malicious. Our goal is to design protocols that resist different levels of misbehaviours:
� Passive attack . An evil agency spies on a set of unconscious players C � f1; : : : ; ng.

It acquires all information they have: their inputs fxigi2C, the final value y, and any
intermediate result that they saw during execution. The first two types of leakage are
uncontrollable anyway. But we hope that the third type � the intermediate results �
do not reveal information beyond what can be inferred from fxigi2C and y. Namely,
our protocol does its best to safeguard privacy of the other players.

� Active attack . The evil agency not only monitors the states of players C �f1; : : : ; ng,
but also controls these puppets to deviate from the protocol.1 For example, when the
protocol instructs �everyone send his value to others�, a player in C may withhold it
or send inconsistent/wrong values to others. Our protocol should be robust enough to
detect or even counter the effect, and strive for correctness and privacy.

Henceforth we call C the �cheaters� and D :=f1;:::;ngnC the �defenders�. Such distinction
is for analyses only; we don't know a priori which players are cheating. In the notes we
will construct protocols that are passive/active secure against any C �f1; : : : ; ng : jC j6 t,
where the constant t is the �cheating level� we could tolerate (typically n/3).

Until the final sections, we always assume a synchronous infrastructure. That is, all
players share a clock and proceed in rounds, and all sent messages arrive instantly.

1.2 Polynomials
Polynomials are indispensable in constructing secure protocols. For our purpose we always
assume a field F :=Zp for some prime p�n. A function f :F!F is a polynomial if

f(x)=
X
i=0

d

�i x
i for some �1; : : : ; �d2F where d< p:

Remark 1. Our �polynomial� is called �polynomial function� in standard literature, due to
some subtlety that we will not encounter in the notes.

Is it possible that we can expand a polynomial in multiple ways? The following discus-
sions exclude this possibility.

Lemma 2. Let f be a polynomial that can be expanded as f(x)=
P

i=0
d �ix

i with �d=/ 0.
Then f has at most d roots. In particular f �/ 0 because d< p.

Proof. By induction on d. For d=0, clearly f ��0=/ 0 has no root. For d> 1, let x? be
a root if there is any. Using Euclidean division, we can find f(x) = (x ¡ x?) � q(x) + r

where r 2F and q(x) =
P

i=0
d¡1 �i x

i with �d¡1=/ 0. Plugging in x= x? we see r= 0, thus
f(x)= (x¡x?) � q(x). By induction hypothesis q has at most d¡1 roots, so f has at most
d roots. �

1. The �evil agency� need not be mankind. It can also model the unpredictable nature, e.g. system failure and
communication error.

2 Section 1

Corollary 3. Every polynomial f �/ 0 has unique expansion f(x)=
P

i=0
d �ix

i with �d=/ 0.

Proof. Suppose
P

i=0
d �i x

i= f(x)=
P

i=0
e �i x

i where d6 e < p. We agree that �i := 0 for
all d< i6 e and consider

0�
X
i=0

e

(�i¡�i)xi :=g(x):

By Lemma 2, this is impossible unless �i=�i for all i. �

With this result, we can now safely identify a polynomial f �/ 0 with its unique expan-
sion coefficients (�1; : : : ; �d) where �d=/ 0. The integer d is called the degree of f and
denoted as deg(f). As a convention, deg(0) :=¡1.

This encoding allows us to sample a polynomial of degree 6d uniformly at random: It
suffices to sample the coefficients (�1; : : : ; �d)2Fd uniformly.

1.3 Lagrange interpolation

Definition 4. For a function g:L!F where L�F, we define its Lagrange interpolation as

�g(x) :=
X
`2L

g(`) � �L¡`(x)
�L¡`(`)

where �L¡`(x) :=
Y

`02Lnf`g
(x¡ `0):

By definition �L¡` is a polynomial of degree 6jLj ¡ 1. Moreover,

�L¡`(x)
�
=0 if x2Lnf`g;
=/0 if x= `:

Therefore �g is a polynomial of degree 6jLj ¡ 1, and for all x2L we have �g(x)= g(x).

Lemma 5. Let f be any polynomial of degree d, and L�F be any set with jLj> d+1.
Then f ��f jL where f jL denotes the restriction of f on L.

Proof. Note that �f jL(x)= f(x) for all x2L. That is,

(f ¡�f jL)(x)= 0; 8x2L:

Recall that deg(f)= d and deg(�f jL)6 jLj ¡ 1. So the polynomial f ¡�f jL has degree at
most maxfd; jLj¡1g= jLj¡1. But we have already found jLj roots. So by Lemma 2, this
polynomial must be constantly zero, hence f ��f jL. �

Lemma 5 gives us a another encoding of a degree-d polynomial: just take arbitrary d+1
(or more) evaluations of the polynomial. The exercise below offers another persepective.

Exercise 1. Given evaluations of a degree-d polynomial f at d+1 points, find a formula
for the coefficients of f . (Hint: use Vandemonde matrix.)

We could already mention how Lagrange interpolation plays a role in secure protocols.
A player can represent his secret by a polynomial f of degree t and distribute its evaluations
to others. Each player holds only one evaluation, which is insufficient to recover f . On the
other hand, if >t+1 players meet together, they can apply Lemma 5 to assemble f .

Preliminaries 3

2 Passive MPC

Now we embark on the journey to MPC protocols. This section is devoted to a short and
elegant protocol that resists passive cheaters. Recall that passive cheaters can pool their
information together, but will not actively deviate from the protocol.

2.1 Shamir sharing

The Shamir sharing realises the idea that we introduced in Section 1.3. When a player
wants to share a secret s with others, he chooses a polynomial f such that deg(f)6 t and
f(0)=s. That is, he �hides� the secret in the 0-slot of the polynomial. Then he distributes
the evaluation f(i) to player i, for i= 1; : : : ; n. Each player now holds a small piece or
�share�. The shares together determine the secret (in fact, >t+1 shares would already do),
but knowing only 6t of them is insufficient.

For perfect security, f must be chosen at random. To be precise we denote Fd(s) :=
ff :deg(f)6d; f(0)=sg. When a player shares s, he should draw a fresh f uniformly from
Ft(s). This can be implemented by generating its coefficients (�0; �1; : : : ; �t)2 fsg �Ft

uniformly.

Protocol Shamir-Distribute

goal: player k distributes shares of secret s to others

the distributer k each player i
sample f 2Ft(s) uniformly
send si := f(i) to each player i receive my share

Protocol Shamir-Assemble

premise: every player holds a share of the same secret s
goal: player k collects the shares and assembles s

the assembler k each player i
receive s1; : : : ; sn send my share to k
define function g: i 7! si
s :=�g(0)

It's important to understand that Shamir-Distribute transforms the secret s into a
vector s=(s1;: : :; sn) scattered over all players. Any individual i holds the i-th component
si only. But all players communally hold the whole vector and thus the secret.

Lemma 6. Any6t players together cannot gain any information about s from their shares.
Formally, for all C �f1; : : : ; ng with jC j6 t, the variables fsigi2C and s are independent.
In information theory language, their mutual information is zero.

Proof. It suffices to condition on s and show that, for jC j= t, the variables fsigi2C are still
uniform over Ft. To this end, observe a bijection between f 2Ft(s) and fsigi2C 2Ft. The
forward map is �evaluating f at each i2C�, and the reverse map is �Lagrange interpolating
i 7!

�
s i=0
si i2C �. Hence fsigi2C must be uniform over Ft as we sample f 2Ft(s) uniformly. �

4 Section 2

A few more words to avoid misconception: When we later say �someone Shamir-
Distribute something�, the someone isn't doing it alone. Instead, all players take part
in the protocol where this someone acts as the distributer.

2.2 Computation

Recall that the players want to compute y := '(x1; : : : ; xn). For convenience, the function
' is given as an arithmetic circuit consisting of three types of gates: addition, scaling, and
multiplication. The gates are evaluated in a topological order. We do not need division
gates because x¡1= xp¡2 by Fermat's theorem and the latter can be computed via the
well-known �square and multiply� method.

Example 7. The function '(x1; x2; x3) := 5x1x2+(x2+x3)2 can be given as

×
x1

x2

x3

+

×5

×
+

Now we outline the idea of the protocol. Basically, all computations are sandwiched
between Shamir-Distribute and Shamir-Assemble:

� One after one, every player Shamir-Distribute his private input to others. Upon
finish, everyone grabs a share of each other's input.

� Now they forget about the inputs and just work on the shares. Following an agreed
topological order of the circuit, every individual directly operates the shares at hand
(though as if manipulating meaningless random numbers!). But as we will show, this
corresponds implicitly to operating the actual inputs.

� When the players finish the entire circuit, they Shamir-Assemble the final output.

everyone
shares secret

conceptual domain parallel domain

+ + + +

1 2 3 1 2 3

Let's fix some shorthands. s s indicates that the owner of s Shamir-Distribute it
as shares s. Conversely, s s means that (say) player 1 Shamir-Assemble value s from
shares s, and then notifies everyone of the value s.

Passive MPC 5

The vector representation also allows us to describe local computations as vector oper-
ations. For example, a+ b means that each player i locally adds the i-th components of
a and b.

Protocol Passive-MPC

for i=1: : :n do
xi xi

foreach gate in circuit '
case is an addition gate

assume a; b the results from parents
compute a+ b as the result of

case is a scaling gate of factor �
assume a the result from parent
compute �a as the result of

case is a multiplication gate
assume a; b the results from parents
compute a � b :=c=(c1; : : : ; cn)
for i=1: : :n do

ci ci
compute

d :=
X
i=1

n �f1; : : : ;ng¡i(0)
�f1; : : : ;ng¡i(i)

ci

as the result of
assume y the result from the final gate
y y

For the analysis, we identify a vector a= (a1; : : : ; an) with the natural mapping i 7! ai.
Hence �a means the Lagrange interpolation of i 7! ai.

Lemma 8. For any vectors a=(a1; : : : ; an) and b=(b1; : : : ; bn),
� �a+b=�a+�b.

� ��a=��a.
� �a�b=�a ��b iff deg(�a)+deg(�b)<n.

Proof. Here we only show the first statement; the other two can be proved similarly.
For all k 2 f1; : : : ; ng we have �a+b(k) = ak+ bk=�a(k) + �b(k). Since both sides have
degree 6n¡ 1 (recall the degree bound of Lagrange interpolation!) but we have found n
agreements, the two polynomials must be equal by Lemma 2. �

Theorem 9. Assume t := b(n¡ 1)/2c: Let 2 ' be any gate. If the correct value of is
v, and the protocol assigns a result v to it, then �v 2Ft(v).

Proof. By induction on the topological order of circuit '. If is an input gate then the
statement is trivially true. If is an arithmetic gate then we distinguish three types:

� Addition gate. Assume a; b are the correct values from the parents. By induction hypo-
thesis we have �a 2 Ft(a) and �b 2 Ft(b). By Lemma 8, we have �a+b=�a+�b 2
Ft(a+ b).

� Scaling gate. Similar.

6 Section 2

� Multiplication gate. Again sssume a; b are the correct values from the parents. By
hypothesis, �a 2 Ft(a) and �b 2 Ft(b). By Lemma 8, we have �c=�a ��b2 F2t(ab)
because deg(�a)+deg(�b)62 t<n. But the problem is that the degrees pile up. This
is why the protocol does not take c as the result, for otherwise our induction cannot
proceed. It circumvents the issue by a small trick. From �c2F2t(ab) we see �c(0)=ab.
But on the other hand,

�c(0)=
X
i=1

n �f1; : : : ;ng¡i(0)
�f1; : : : ;ng¡i(i)

ci

by definition of Lagrange interpolation. Therefore,

ab=
X
i=1

n �f1; : : : ;ng¡i(0)
�f1; : : : ;ng¡i(i)

ci

is a linear combination of the values fcigi=1n . Keep in mind that player i owns ci.
Security will break if he simply publishes this information. The trick is to wrap ci by
yet another Shamir sharing as the protocol does. Basically, we treat c1;:::; cn as private
inputs and evaluate a linear combination of them. The problem then reduces to the
addition/scaling cases, which we already handled. In the end we have

�d2Ft

 X
i=1

n �f1; : : : ;ng¡i(0)
�f1; : : : ;ng¡i(i)

ci

!
=Ft(ab): �

Corollary 10. The protocol Passive-MPC is correct.

2.3 Passive security
You should have an intuition that the protocol Passive-MPC resists passive attack. After
all, the players always use fresh Shamir sharings to distribute their secrets, which leaks zero
information by Lemma 6. This level of rigour is enough for us, but here we still provide a
formalization that clarifies the meaning of security.

Definition 11. Let P be a protocol. Denote by �i the set of variables that player i can see
during its execution. We say P is passively secure with respect to C if there is an algorithm
that
� takes fxigi2C and y as inputs; and
� generates a transcript that has the same distribution as f�igi2C.

We justify our definition as follows. Suppose the algorithm in the definition exists, then
we can generate all intermediate results in f�igi2C blindly from fxigi2C and y, without
even running the protocol. So anyone who tries to extract information from f�igi2C is not
advantageous to a person who knows only fxigi2C and y. In other words, we cannot blame
the protocol for leaking information.

Exercise 2. Prove thatPassive-MPC is passively secure with respect to any C�f1;:::;ng
where jC j6 t := b(n¡ 1)/2c.
Exercise 3. Consider an alternative subprotocol implementing the multiplication gates,
and argue about its correctness and security:

Let a; b be the results from parents and compute c := a � b. Each player i samples
a secret random value ri 2F and distributes it twice: ri ri and ri ri

+. The second
distribution is a bit special by using a polynomial of degree up to 2 t (rather than the
usual t). Compute r :=

P
i=1
n ri and r+ :=

P
i=1
n ri

+. Compute � :=c¡r+ and immediately
reconstruct � �. Finally, take r+(�; : : : ; �) as the result.

Passive MPC 7

3 Broadcast and Consensus
Before getting into actively secure MPC protocols we develop two key devices, broadcast
and consensus. Even amid active cheaters, a broadcast protocol can deliver a consistent
value from the broadcaster to the others, while a consensus protocol can strike an agree-
ment among all defenders.

Specification of Broadcast
(?; : : : ;?; xk;?; : : : ;?) 7! (y1; : : : ; yn)
Consistent: yi= yj for all i; j 2D.
Sound: if k 2D, then yi=xk for all i2D.

Specification of Consensus
(x1; : : : ; xn) 7! (y1; : : : ; yn)
Consistent: yi= yj for all i; j 2D.
Persistent: if xi= b for all i2D, then yi= b for all i2D.

Let's consider a super simple broadcast protocol: the broadcaster k just sends xk to
every player. Well, if k 2D then everything goes smoothly. But if k 2 C then he can
intentionally send different values to different players, leading to inconsistency. This should
give you an idea why designing such protocols is non-trivial.

Lemma 12. One could use consensus to achieve broadcast, and vice versa.

Proof. Consensus) broadcast:

Protocol Broadcast

the broadcaster k each player i=/ k
send xk to all players

receive xk from k
run Consensus run Consensus

Broadcast) consensus is an exercise, where we can only tolerate b(n¡1)/2c cheaters. �

3.1 Without setup
In this section we design a consensus protocol that allows up to t := b(n¡ 1)/3c cheaters.
For simplicity, we assume the inputs are 0/1. After understanding the proof, you are invited
to extend the protocol to arbitrary field.

The protocol consists of multiple, cascading stages; each stage strengthens the output
from the previous one. Ultimately the output is strong enough and meets our specification.

Protocol Consensus

for k=1: : :t+1 do
run Weak-Consensus
run Graded-Consensus
run King-Consensusk where k acts as king

� In Weak-Consensus stage, everybody exchange their preferences. A player adjusts
his preference to b2f0;1g if he sees it trending substantially; otherwise he abtains. The
idea is to play safe: follow the trend whenever possible; if the trend is unclear then step
aside to avoid hindering the agreement.

8 Section 3

� In Graded-Consensus stage, everybody exchange their (new) preferences. A player
then adapts to the majority. In addition, he grades his decision as �strong� if the lead
is substantial.

� In King-Consensus stage, a designated king gives an advisory value to others. A
player ignores the advice if he already gained a �strong� belief in the previous stage;
otherwise he takes the advice. In some sense, the king breaks ties and accelarates the
formation of agreement.

The three stages are fleshed out below:

Protocol Weak-Consensus

each player i
send my xi to all players
receive x1; : : : ; xn from all players
let c0 count the 0's among them
let c1 count the 1's among them
adjust

xi :=

8<: 0 c0>n¡ t
1 c1>n¡ t
? otherwise

Protocol Graded-Consensus

each player i
send my xi to all players
receive x1; : : : ; xn from all players
let d0 count the 0's among them
let d1 count the 1's among them
adjust xi :=1fd1> d0g
grade �i :=1fdxi>n¡ tg

Protocol King-Consensus

the king k each player i=/ k
send my xk to all players receive xk from the king

if �i=0 then adjust xi :=xk

Lemma 13. The protocol Consensus is persistent.

Proof. Suppose xi= b for all i2D. We analyse the protocol in stages.

� In Weak-Consensus, every player receives at least jD j> n¡ t copies of b. So any
defender i2D stays xi= b.

� Then in Graded-Consensus, every player receives at least n¡ t copies of b, and at
most t copies of b� (all sent by cheaters). Note that n¡ t> t by our choice of t. Therefore,
any defender i shall stay xi= b and grade himself �i=1fdb>n¡ tg=1.

� Hence in King-Consensus, no defender shall listen to the word of the king. All of
them insist on b.

Broadcast and Consensus 9

� And the agreement b is preserved inductively throughout the loop. In the end, all
defenders output b. �

Lemma 14.

1. When Weak-Consensus finishes, if some defender i 2D holds value xi= b 2 f0; 1g
then all defenders hold either b or ?.

2. WhenGraded-Consensus finishes, if some defender i2D holds value xi=b and grade
�i=1 then all defenders hold value b.

3. When King-Consensusk finishes, if k2D holds xk= b then all defenders hold value b.

4. The protocol Consensus is consistent.

Proof.

1. Suppose i2D holds xi= b2f0; 1g, thus he had received cb>n¡ t copies of b. Among
them at most t copies came from cheaters, thus at least n ¡ 2 t copies came from
defenders. So at least n¡ 2t defenders held b prior to this stage. It implies that all
players shall receive >n ¡ 2t copies of b, and hence 62 t < n ¡ t copies of b�. So no
defender shall output b�.

2. Suppose i2D holds xi= b and �i=1. From his perspective db>n¡ t. Again, at least
n¡2t copies of b that he has received are reliable, so at least n¡2t defenders held the
value b. We make two parallel observations:

� Any defender is able to count db>n¡ 2t.
� No defender held b� due to point 1. So any received b� must come from a cheater,

thus db�6 t.
Therefore db>db�, so any defender ends up with value b.

3. Suppose k 2D holds xk= b. For any other defender i2D we consider two cases.

� If his grade is �i=0, then he will take the king's value b.

� If his grade is �i=1, then he will insist on his own value xi. But from point 2 we
know that all defenders � including the king � held the same value prior to the
current stage, thus xi=xk= b.

4. Since jC j6 t, at least one of the t+1 rounds would designate a defender as the king.
For that particular round we can achieve agreement among defenders, by point 3. From
then on the agreement preserves by Lemma 13. �

3.2 With setup

In this section we describe a signature-based broadcast protocol that allows up to t :=n¡1
cheaters. The superior bound comes at price:

� We have to introduce cryptographic assumptions (e.g. dlog, RSA) underlying the digital
signature scheme.

� Also, the network must provide some public key infrastrutures for key delivery.

� With positive success probability, the cheaters can sabotage the protocol via breaking
the signature scheme. The probability is negligible though, if the cheaters are polyno-
mially bounded.

10 Section 3

The basic idea of the protocol is simple: All players forward whatever new value(s) they
received from others, so that everyone can observe inconsistency if there is any. In that
case, they output some default value, say 0.

But be careful! We could not afford running a protocol indefinitely, so a maximum
number of rounds, r, must be imposed. Now consider the following situation. All players
follow the protocol in the first r¡1 rounds perfectly and all see a consistent value, say 35.
Until in the final round a cheater sends a defender i some new value, say 22. Even though
i sees inconsistency, he has no more chance to inform others. So i outputs the default value
0 while all other defenders output 35.

This �last round� problem is resolved by a smart construction due to Dolev and Strong.
Suppose each player i has a secret/public key pair (ski; pki), where the pubic keys are
accessible by everybody. Any value circulating in the network must be signed at each hop
to track its history. It will be discarded if the history is incomplete. Hence a surviving value
must have originated from the beginning and will have enough time to reach every defender.

Protocol Dolev-Strong

the broadcaster k
sign � := sgn(skk; xk)
send (xk; f�g) to all players

then, each player i
for r=1: : :t+1 do

receive (x;�)
if x not yet accepted, and � contains valid signatures
from k and from r¡ 1 other distinct players then

accept x
sign � := sgn(ski; x)
send (x;�[f�g) to all players

if have accepted exactly one x then output x
else output default value 0

Lemma 15. The protocol Dolev-Strong is consistent and sound, provided that the
signature scheme is unforgeable.

Proof. (Consistency) Consider any message (x;�) accepted by any defender i2D in any
round r.

� If r6 t is not the last round, then i is able to forward (x;�[f�g) in the next round.
By then every defender will accept the value x.

� If r= t+1 is the last round, then i cannot forward the value. Fortunately, since � in
this case contains signatures from r= t+1> jC j distinct players2, at least one of them,
say j, is a defender. This j had accepted the value x in some previous round and had
already informed others. Therefore every defenders have accepted the value x.

Hence, whenever some defender accepts x, all defenders accept it too. So the defenders
output consistently.

(Soundness) Exercise. �

2. Here we used the unforgeability assumption. We observe r distinct signatures, but we conclude that there
are r distinct signers. This makes sense only if the signatures are unforgeable.

Broadcast and Consensus 11

4 Active MPC
In the active attack setting, cheaters can deviate from our protocol arbitrarily and mess
it up. As protocol designers, we must build mechanism to detect and correct possible
deviations. We let the players run our old Passive-MPC protocol, but on top of that we
ask them to monitor each other and raise a complaint when they observe misbehaviour. If
player i blames player j, then one of them must be a cheater. To figure out who, j proves
his innocence by showing a conclusive evidence. If j fails to do so then we eliminate him
from the game; otherwise we eliminate i. The game is then restarted with one player less.

How can a player tell misbehaviour without knowing others' internal states? And,
why can a defender present a proof of innocence, while a cheater cannot? The high level
idea is as follows. Everybody encrypt his initial state and broadcast the cypher. Due to
some structural property of our encryption scheme, calculus on the cyphers corresponds to
calculus on the states behind the scenes. Therefore, every players can do cypher calculus in
the public domain, which essentially �tracks� the state evolution of the protocol. At some
point a player must �open� his current state to another player for verifification. If it does
not match the (publicly known) cypher, then something must be wrong.

The �encryption� here is more precisely called �commitment�. We will next define its
properties before we embed it into our protocol. Unless otherwise stated, we allow cheating
level t := b(n¡ 1)/3c.

4.1 Commitment Function
A commitment function H: (x; r) 7!� locks value x into �commitment� �, using a uniform
random �key� r to protect x. We impose three semantic requirements:
� Binding : Given any (x; r), it is hard3 to find x0=/ x and r 0 such that H(x0; r 0)=H(x; r).
� Hiding: Given �, it is hard to tell which value x gave rise to �.
� Homomorphic: For all (x; r) and (x0; r 0) we have H(x; r) �H(x0; r 0)=H(x+x0; r+ r 0).
The binding property implies impossibility to alter preimage � once you have committed
to x and broadcast the commitment �, you cannot lie when others request a proof. The
hiding property means you can safely broadcast �, as others cannot infer x from it. The
homomorphic property says commitment calculus mirrors preimage calculus.

Remark 16. Sometimes we can impose even stronger properties. For instance, the �perfect
binding� property requires that there is no x0=/ x and r 0 with H(x; r) =H(x0; r 0). The
�perfect hiding� property requires that H(x; �) is bijective for any x. In particular, provided
that r is uniform, �=H(x; r) always uniformly distributes over the entire space Im(H),
regardless of the value x.

Below we collect two concrete commitment functions based on the discrete logarithm
assumption.

Example 17. (Pederson) Let (G;+) be a group of order p with generators g and h. We
define H :Zp�Zp!G by H(x; r) := gx hr. It is perfect hiding because h is a generator
and thus H(x; �) is bijective. It is binding because any algorithm spotting a collision
gx hr = gx

0
hr
0
with x =/ x0 can be transformed into an attacker for discrete logarithm

problem (how?). Finally, it is homomorphic for obvious reason.

Example 18. (ElGammal) This is essentially Pederson commitment tagged with the key.
That is, we define H :Zp�Zp!G2 by H(x; r) :=(gxhr; gr). It is hiding, perfectly binding,
and homomorphic. The arguments are left as exercise.

3. As per cryptography convention, �hard� means that any polynomial time algorithm can only succeed with
negligible probability.

12 Section 4

Next we show the use case of a commitment function H. Notation:
� The symbol � reads �tracks�.
� ��� (x; r)� indicates that all players had locally stored �, which should equal H(x; r).
� The command �let expr� (x; r)� instructs all players to locally evaluate expression

expr and store the result �, which should equal H(x; r). Here expr shall involve
public information only, so everyone can execute without trouble. Upon finish of the
command, we have �� (x; r).

Protocol Lock

goal: all players learn the commitment by player k to his secret s

the owner k each player
sample r uniformly
broadcast � :=H(x; r) get �

let �� (x; r)

Protocol Open

premise: �� (x; r)
goal: player i transfers (x; r) to player j

the owner i the receiver j
send (x; r) to j receive (x; r)

if H(x; r)=� then broadcast �valid�
else broadcast �invalid�

when hearing �invalid�,
the owner i each player
broadcast (x; r) get (x; r)

if H(x; r)=� then
eliminate player j and reset

else
eliminate player i and reset

4.2 Committed sharing
We are now ready to adapt Shamir sharing to the active setting, by adding commitments
and verifications to the main skeleton.

Protocol Committed-Distribute

premise: �0� (s; �0)

the distributer k each player i
sample f 2Ft(s) uniformly
expand f(x) :=

P
j=0
t �jx

j

for j=1: : :t do for j=1: : :t do
lock �j (key denoted �j) �j� (�j ; �j)

let
Q

j=0
t �j

ij� (f(i);
P

j=0
t �j ij)

open (f(i);
P

j=0
t �j i

j) to each i get valid (si; ri)
keep (si; ri) as my share/key

Active MPC 13

Essentially, the distributer hands out the (encrypted) coefficients (including the secret),
allowing the public to virtually construct the polynomial. Then he opens the respective
share to each player, who can readily tell if he is deviating from that polynomial. This way,
the shares of the players indeed lie on the same polynomial f 2Ft(s), although f might
not be random if k 2C.

Protocol Committed-Assemble

premise: �i� (si; ri) for i=1; : : : ; n

the assembler k each player i
receive (s1; r1); : : : ; (sn; rn) send my share/key (si; ri) to k
exclude indices i:H(si; ri)=/ �i
define function g: i 7! si
s :=�g(0)

4.3 State tracking
� s (s; r) means that the players run Committed-Distribute. When they finish,

the owner of s has distributed the shares s along with keys r. As before s and r are
vectors; player i knows i-th component only.

� s (s;r)means that the players assemble s by running Committed-Assemble where
k=1; : : : ; n take turns as the assembler. Note that it is improper to assemble centrally
and then broadcast, as the broadcaster might alter the value that he learns.

� ��� (s;r)� and �let expr� (s; r)� should be interpreted coordinatewise.

Protocol Active-MPC

for i=1: : :n do
let be the input gate for player i
player i locks xi
xi (:s; :r)

foreach gate in circuit '
let � and � be the parents of
�� (�:s; �:r)
�� (�:s; �:r)
case is an addition gate

:s := �:s+ �:s
:r := �:r+ �:r
let � ��� (:s; :r)

case is a multiplication gate
c=(c1; : : : ; cn) := �:s � �:s
for i=1: : :n do

player i locks ci
player i proves ci= ai � bi
ci (ci;ri)
�i� (ci;ri)

:s :=
P

i=1
n wi ci

:r :=
P

i=1
n wi ri

let
Q

i=1
n �i

wi� (:s; :r)
let be the final gate
y (:s; :r)

14 Section 4

For brevity, in the protocol we omitted the scaling gates, and abbreviated

wi :=
�f1; : : : ;ng¡i(0)
�f1; : : : ;ng¡i(i)

:

In the case of addition gates, the players locally add the shares (like before) as well as
the associated keys. At the same time, the public multiply the commitments accordingly
to track the change by homomorphism.

In the case of multiplication gates, the idea is the same except for one more technicality:
There is no apparent way to derive a commitment to ci from what the public already knows
(e.g. the commitments to ai and bi). Homomorphism just doesn't apply. Hence, as the
protocol does, player i has to establish a fresh commitment to ci that has no connection
to prior public knowledge. How can we bridge the gap? Here a Multiplication-Prove
is invoked to convince other players that i did the multiplication properly. The protocol
is based on polynomials too, but in a special way.

Protocol Multiplication-Prove

premise: the prover k locked v; v 0; v 00 and �0� (v; �0)
goal: he convinces others that v= v 0 � v 00

v 0 (v 0;r 0); denote the chosen polynomial f 0; discard keys
v 00 (v 00; r 00); denote the chosen polynomial f 00; discard keys
the prover k each player i
f := f 0 � f 00

expand f(x) :=
P

j=0
2t �jx

j

for j=1: : :2 t do for j=1: : :2 t do
lock �j (key denoted �j) �j� (�j ; �j)

let
Q

j=0
2t �j

ij� (f(i);
P

j=0
2t �j i

j)

open (f(i);
P

j=0
2t �j i

j) to each i get valid (f(i); ri)
if f(i)= vi

0 � vi00 then broadcast �match�
else broadcast �mismatch�

when hearing �mismatch� from player i,
the prover k each player
broadcast (f(i); r) I(f(i); r)

if H(f(i); r)=
Q

j=0
2t �j

ij then
eliminate player i and reset

else
eliminate player k and reset

discard everything generated in this protocol

We remind the readers, that the first two steps implicitly use the commitments to v 0

and v 00 given by the premise.
Suppose the prover lies (i.e. locked v; v 0; v 00 such that v=/ v 0 � v 00). From the viewpoint

of the public, they (virtually) constructed polynomials f ; f 0; f 00 where deg(f 0);deg(f 00)6 t,
deg(f)62t, and moreover f(0)=v=/ v 0 � v 00= f 0(0) � f 00(0). Since the different polynomials
f and f 0 � f 00 can agree on at most 2 t evaluations, there are at least n ¡ 2 t > t> jC j
mismatches. So at least one defender shall notice and broadcast �mismatch�, eliminating
the prover.

Active MPC 15

4.4 Strengthening*

Due to limitation of our current multiplication proof, we can tolerates up to t=b(n¡1)/3c
cheaters. Using the theory of zero knowledge proofs, it is possible to allow up to t =
b(n¡ 1)/2c cheaters, but we will not pursue that direction in the notes.

For another direction of strengthening, we may replace the commitment function by a
interactive commitment scheme that does not inherit any cryptographic assumption. In the
scheme, the commitment is no longer a single value �, but a vector � scattered over the
players. Also, the key is not a scalar but a polynomial. (Though methodologically similar
to Shamir sharing, we must distinguish them as they have different purposes!)

To Lock value s into commitment �, the owner sends each player a slice of a bivariate
polynomial going through (0;0; s). The players exchange limited amount of information to
check consistency and complain if not. After resolving all complaints, player i projects his
slice to a number �i. The values (�1; : : : ; �n) :=� jointly serve as the commitment. One
can show that f(i; �i)gi2D lie on polynomial r 2Ft(s), which is used as the owner's key.

To Open the value to player j, the owner simply transmits j the key r (a polynomial).
Then j collects the scattered � from all players and checks if they lie on r. He accepts
iff there are 6t outliers. Clearly, if the owner is honest then j shall accept. If the owner
is cheating, then his transmitted key r=/ �(i2D) 7!�i. The two polynomials have at most t
intersections and will disagree on >2t points (>t came from defenders), so j shall reject.

The scheme has the attractive feature of being perfect hiding, perfect binding and
homomorphic all at once. It lifts the entire protocol to information-theoretical security,
i.e. resisting t= b(n¡ 1)/3c cheaters of unbounded resources.

16 Section 4

5 Efficiency

Multiplication gate is the performance bottleneck in our protocols.

� In Passive-MPC, each multiplication gate needs a fresh Shamir-Distribute, which
communicates n2 messages.

� In Active-MPC, each multiplication gate invokes a fresh Committed-Distribute
and n Multiplication-Prove. Each of these needs �(n) Lock. Each Lock requires
one broadcast, which in turn entails �(t �n2)=�(n3) messages. In total, a multiplica-
tion gate amounts to �(n5) messages!

Can we do better? Surprisingly, we could compress the message complexity of a multiplic-
ation gate to amortized �(n) in both passive and active protocols!

Let us begin with the passive setting. Recall the alternative multiplication scheme that
we saw in Exercise 3:

Let a; b be the results from parents and compute c :=a � b. Each player i
samples a secret random value ri2F and distributes it twice: ri ri and
ri ri

+. The second distribution is a bit special by using a polynomial
of degree up to 2 t (rather than the usual t). Compute r :=

P
i=1
n ri and

r+ :=
P

i=1
n ri

+. Compute � := c¡ r+ and immediately reconstruct � �.
Finally, take r+(�; : : : ; �) as the result.

Basically, each player contributes a random ri to the �secure randomness� r :=
P

i=1
n ri

whose distribution is guaranteed uniform. (In fact, summing t+1 individual randomness
suffices.) The message complexity is again �(n2).

To reduce cost, can we extract from r1; : : : ; rn multiple secure randomness and save the
excess for future use? If we manage to extract �(n) many, then the amortized complexity
becomes �(n2/n)=�(n). This idea is implemented by a structure called hyperinvertible
map.

5.1 Hyperinvertible map

Definition 19. Assume 	: (y1; : : : ; yn) 7! (yn+1; : : : ; yn+m) maps from Fn to Fm. If for all
I�f1;:::;n+mg of size jI j=n and all assigenments to fyigi2I, there is a unique assignment
to fyigi2/I satisfying 	(y1; : : : ; yn)= (yn+1; : : : ; yn+m), then we call 	 hyperinvertible.

In other words, 	 is hyperinvertible if fixing in total n values (inputs and/or outputs)
would uniquely determine the remaining values. Such property reminds us of polynomial
evaluation and interpolation. For example, the map

	(y1; : : : ; yn) := (g(n+1); : : : ; g(n+m)) where g :=�(y1; : : : ;yn)

is hyperinvertible. To see this, notice that 	(y1; : : : ; yn)= (yn+1; : : : ; yn+m) if and only if
points (1; y1); : : : ; (n+ q; yn+m) lie on a polynomial of degree 6n¡ 1. (Prove it!) Hence,
fixing any n values would uniquely determine the other values. Moreover the map is linear.

Lemma 20. Let 	:Fn!Fm be a hyperinvertible map where n>m. Then no matter how
we fix n¡m many inputs, the restricted map is a bijection Fm!Fm.

Efficiency 17

Proof. Denote 	: (y1; : : : ; yn) 7! (yn+1; : : : ; yn+m). Fix any I0�f1; : : : ; ng with jI0j=n¡m
and impose any condition on inputs fyigi2I0. They together with the outputs uniquely
determine all other inputs, establishing an inverse mapping from fyigi2fn+1; : : : ;n+mg to
fyigi2f1; : : : ;ngnI0. Hence the restricted map is bijective. �

5.2 Faster passive MPC
Let 	:Fn!Fn¡t be a linear hyperinvertible map. We apply it on individual randomness
r1; : : : ; rn from the players. Among these at most t are cheating, but Lemma 20 ensures a
bijection from the remaining (i.e. good) inputs and the outputs. Since the good inputs are
uniformly distributed over Fn¡t, the outputs must also be uniform over Fn¡t. In other
words, we can extract n¡ t secure randomness out from r1; : : : ; rn.

Protocol Refill

for i=1: : :n do
player i samples ri uniformly
ri ri using degree up to t
ri ri

+ using degree up to 2t
(�1; : : : ; �n¡t) :=	(r1; : : : ; rn)
(�1

+; : : : ; �n¡t
+) :=	(r1

+; : : : ;rn
+)

keep random pairs (�1; �1
+); : : : ; (�n¡t; �n¡t

+) for future use

The line (�1; : : : ; �n¡t) :=	(r1; : : : ; rn), for example, means that each player i locally
computes (�1i;:::; �n¡t;i) :=	(r1i;:::; rni). Here linearity of 	 is crucial, because otherwise
we will lose the connection between local computation on the shares and the conceptual
computation on the randomness.

Following the lines, a faster passive MPC protocol is immediate:

Protocol Passive-MPC

. . .
foreach gate in circuit '

. . .
case is a multiplication gate

assume a; b the results from parents
compute a � b :=c=(c1; : : : ; cn)
if randomness depleted then

Refill
take the next randomness pair (�; �+)
� := c¡ �+
� �
take �+(�; : : : ; �) as the result of

. . .

5.3 Faster active MPC
The protocol Refill does not work in the active setting: a cheater i2C might distribute ri
and/or ri

+ via polynomials of wrong degree, or introduce inconsistencies between the two.
We amend the protocol with a checking phase. Let 	:Fn!Fn be a linear hyperinvertible
map.

18 Section 5

Protocol Reliable-Refill

for i=1: : :n do
player i samples ri uniformly
ri ri using degree up to t
ri ri

+ using degree up to 2t
(�1; : : : ; �n) :=	(r1; : : : ;rn)
(�1

+; : : : ; �n
+) :=	(r1

+; : : : ; rn
+)

for i=1: : :2t do
player i collects �i from others and interpolates f :=��i
player i collects �i

+ from others and interpolates g :=��i+
abort if player i claims (deg(f)>t)_ (deg(g)> 2t)_ (f(0)=/ g(0))

keep randomness (�2t+1; �2t+1
+); : : : ; (�n; �n

+) for future use

Simply put, we �reveal� 2 t randomness to different checkers. Among them at least
2t¡ t= t are defenders, who will check faithfully. If no one claims abnormality, then we
have at least t tame outputs (the word �tame� only means correct degree and consistency;
it does not imply correct distribution). They and the at least n¡ t tame inputs linearly
determine the rest of inputs/outputs by 	. So we must conclude that all inputs/outputs
are tame.

Having passed this syntactic check, the situation degenerates to the passive case. So
we may now conclude, semantically, that the unrevealed n¡2t randomness are uniformly
distributed and serve as the desired secure randomness.

Next we explain secret distribution. The key idea is to mask the secret by a secure
randomness and broadcast the result. All other players can then undo the mask locally.

Protocol Reliable-Distribute

premise: the next available randomness pair is (�; �+)
goal: k distributes the shares of secret s; they do lie on a degree-t polynomial

the distributer k each player i
receive �1; : : : ; �n send my randomness share �i to k
find f :deg(f)6 t with jfi: f(i)= �igj> 2t
� := f(0)
broadcast � := s¡ � receive �

compute my share as si := �i+ �

In the first half (highlighted in yellow), k collects �= (�1; : : : ; �n) and reconstructs
the secure randomness �. Of course, any cheater can send an incorrect share; but we still
have jD j>n¡ t>2t unaltered shares � which lie on a degree t polynomial by guarantee of
Reliable-Refill. So the desired f always exists. On the other hand, if some f satisfies
the condition, then >2t¡ t= t shares lying on it came from defenders, which enforces f
to coincide with the correct polynomial. In summary, the first phase can always figure out
the right �.

In the second half, the distributer masks his secret by � and broadcasts it. This does
not expose any secret since � is random. Each player then locally removes the mask and
obtain a share for s. Note that the shares s= (s1; : : : ; sn) inherits the degree from the
shares �=(�1; : : : ; �n), which is by assumption correct.

Efficiency 19

Remark 21. The search for f can be implemented efficiently by Berlekamp-Welch decoder.
One can regard it as a robust version of Lagrange interpolation in Shamir-Assemble that
resists up to t outliers. This unveils curious connections to coding theory and, indeed, the
trick was inspired by error correction codes.

The final missing piece, Reliable-Assemble, is in charge of reconstructing secrets
from shares. What could be simpler? Just Berlekamp-Welch decodes the secret towards
each player!

But there is space for improvement. The following protocol allows us to assemble
multiple (up to n¡ 2t=�(n)) secrets in one batch for the sake of efficiency.

Protocol Reliable-Assemble

premise: `+1 secrets s(0); : : : ; s(`), each shared by degree-d polynomial
goal: all players learn all these secrets

for i=1: : :n do
�(i) :=

P
j=0
` s(j) ij

player i collects �1
(i)
; : : : ; �n

(i) from others
player i finds f : deg(f)6 d with

�����k: f(k)=�k
(i)	����>d+ t

if f does not exists then abort
else player i sends �(i) := f(0) to all players

then, each player locally
find g: deg(g)6 ` with jfi: g(i)=�(i)gj>`+ t
if g does not exists then abort
else regard the coefficients of g as secrets s(0); : : : ; s(`)

Here is what happens behind the scenes. Before protocol ever starts, wementally embed
the secrets in the coefficients of a polynomial

g(x) :=
X
j=0

`

s(j)xj:

We also have in mind evaluations �(i) := g(i) for all i2 [n]. Now the protocol starts, which
somehow works backwards:
� we first derive the shares �(i) from shares s(0); : : : ; s(`) via linear combination;
� then we can recover �(i) from �(i), via the robust Berlekamp-Welch decoder;

� that in turn allows us to recover g from �(1); : : : ; �(n), again via Berlekamp-Welch;
� so finally we can recover the coefficients, i.e. secrets.
The analysis is identical to the first phase of Reliable-Distribute � just repeat it twice.
Provided d; `<n¡2t, the protocol always succeeds and, in that case, assembles correctly.
The message complexity is �(n2/`), and the main saving comes from imposing polynomial
structure on the otherwise independent secrets.

Exercise 4. Prove the correctness rigorously. Why is it necessary that each �(i) is assembled
towards different players?

Exercise 5. If the underlying field is large (in specific, having more than n+ ` elements),
then one can design an alternative Reliable-Assemble. This time, we embed the secrets
not as coefficients of g, but the evaluations of g. We mentally define g :=�i 7!s(i) and the
values �i := g(`+ i) for i 2 [n]. Note that each �i is a linear combinations of the secrets.
Please complete the description of this protocol and argue about its correctness.

20 Section 5

Now we put every pieces together and yield an efficient active MPC protocol:

Protocol Active-MPC

for i=1: : :n do
if randomness depleted then

Reliable-Refill
player i Reliable-Distribute his input

foreach gate in circuit '
assume a; b the results from parents
case is an addition gate

take a+ b as the result of
case is a multiplication gate

compute a � b :=c=(c1; : : : ; cn)
if randomness depleted then

Reliable-Refill
take the next randomness pair (�; �+)
� := c¡ �+
Reliable-Assemble � from �
take �+(�; : : : ; �) as the result of

Reliable-Assemble the output

There are two worthy comments:
� For simplicity we did not exploit the batch processing ability of Reliable-Assemble

� what a shame! In real implementation, we should of course parallelize multiplications
and do their corresponding �-assembling in one batch.

� The protocol might abort in Reliable-Refill and in Reliable-Assemble. The
latter is caused by the possibly high degree (namely 2t) of shares �. Using a trick called
circuit randomization, it is possible to drop the degree and relocate the abortion issue
to Reliable-Refill.

SinceReliable-Refill involves no secret inputs, we can do it before the MPC even
starts and prepare sufficient random pairs for future. If it aborts, we ask the problematic
player to publish his entire transcript, allowing a judge to pinpoint the cheater. Then
we eliminate the cheater and start all over again.

Efficiency 21

6 Asynchronous Broadcast and Consensus

6.1 The asynchronous model

So far we have assumed the idealized synchronous model, a fair approximation to small
local networks. But if the network spans across the globe, communications will take longer,
which shakes our �instant delivery� assumption.

The asynchronous model takes communication delays into account. Imagine a scheduler
in full charge of messages delivery. Any message sent by the players is handed to the
scheduler. He can freely decide the arrival time of each message at hand (but of course he
cannot deliver to the past or wait till the end of the world. . .). For the players it means:
(i) each message can be delayed for an unbounded finite time; (ii) a message sent early
may arrive late.

Let's investigate what happens if we run our protocols in this model. Recall that they
have rigid time frames. A player need to receive required messages before the next round
strikes; otherwise he gets stuck, lags behind, and will be considered malicious by the other
players. One might patch the issue by broadcasting �Sorry, I'm stuck now, please wait me
for another round.� But then a cheater could take advantage of this mechanism and keep
everyone waiting forever. It turns out that any easy patch will tear another hole.

Asynchronous protocols come and fix just this. They abandon the concept of rounds
but are purely driven by messages. The arrival of a message at a player will activate him
to make some progress. Because messages may pop up asynchronously and irregularly,
different players may have made different progress so far. Of course, their progress are
not independent but instead interconnected (otherwise the protocol can't be correct). The
hardest part of asynchronous protocol design is to enforce these interconnections.

1

2
...
n

6.2 Asynchronous broadcast

As a warm-up, we present an asynchronous broadcast protocol by Bracha.

Protocol Async-Broadcast

rule player on event do
(0) k started send (input; x) to all
(1) any got (input; x) from broadcaster k send (echo; x) to all
(2) any got (echo; x) from n¡ t players for some x send (ready; x) to all
(3) any got (ready; x) from t+1 players for some x send (ready; x) to all
(4) any got (ready; x) from n¡ t players for some x output x and halt

Lemma 22. Assume t := b(n¡ 1)/3c. The protocol Async-Broadcast is

� Consistent: defenders either all get stuck, or all terminate and output the same value.

� Sound: if k 2D then all defenders eventually terminate and output k's input.

22 Section 6

Proof. We argue about soundness first. Assume k 2D honestly sends (input; x) to all
players, which eventually triggers (1) of each defender. On the other hand, the cheaters
could by no means trigger (1), so each defender shall echo only the correct x. That creates
n¡ t copies of (echo; x), enough to trigger (2); the cheaters cannot trigger (2) with false
values since jC j6 t < n¡ t. This results in n¡ t copies of (ready; x), enough to trigger
rule (4); again the cheaters can't trick defenders into wrong values.

Next we move on to consistency. Suppose i2D terminates with value x. We will show
that all defenders terminate and output the same x. By (4), defender i has observed n¡ t
copies of (ready; x), among which at least n¡ 2t> t+1 copies came from defenders and
will eventually and identically deliver to everyone, triggering (3). That would spawn the
number of (ready; x) messages, ensuring that every defender eventually sees n¡ t copies,
enough to trigger (4).

Are we finished? Not quite. We used the cunning word �eventually� to indicate that the
asserted behaviour will occur at some point if the players never terminate. The worry is, if
the �eventuality� arrives too late, a defender might have terminated (due to other causes)
and will not execute the rules as usual! Hence we must also show that the conspiring
cheaters and scheduler cannot trick the defenders to terminate before our �eventuality�
actually happens.

Let's now explore the past so that no subtlety about the future shall tangle with our
argument. As we noted, player i saw n¡ t copies of (ready; x). Well, the message must
be initiated by someone from the first place. They cannot be all invented out of air by
cheaters, otherwise rule (3) shall reject to spawn them. The only possible origin is that
some defender j 2D did invoke rule (2) and disseminated the message. Alright, we travel
back and see that j got n¡ t copies of (echo; x). We collect the senders into a set X.

Now we assume, for the sake of contradiction, that some other i0 2 D outputs an
inconsistent value x0=/ x. Applying the same argument, we conclude a set X 0 of >n¡ t
players that have sent (echo;x0). Note that jX\X 0j= jX j+ jX 0j¡jX[X 0j>2(n¡ t)¡n>
t, so the intersection must contain a defender. But how can he send both (echo; x) and
(echo; x0) to others? No way if you look at the rules! �

The consistency here is weaker than its synchronous counterpart; it could happen that
none of the defenders terminate. But the flaw is inherent in asynchronous model. If the
broadcaster k � a centralized role � does not send message at all, everyone still have to
wait forever because they cannot tell if k is cheating or just slow!

6.3 Asynchronous consensus: first version

In the decentralized setting of consensus, the story becomes different. It turns out that a
�king� is not necessary and can be replaced by a communal effort, thus ensuring termina-
tion. We will first present a preliminary version that, in practical sense, achieves the desired
properties. Later we will study a refined version that satisfies the properties perfectly and
terminates with probability 1. Throughout we assume t := b(n¡ 1)/4c.

Protocol Async-Weak-Consensus

rule on event do
(0) started Async-Broadcast my value

(1) collected n¡ t values output

8>><>>:
0 #0>n¡ 2t
1 #1>n¡ 2t
? otherwise

Asynchronous Broadcast and Consensus 23

Lemma 23. The protocol Async-Weak-Consensus terminates; moreover, it is

� Consistent: if some i2D outputs b2f0; 1g then no defender outputs b�.

� Persistent: if all defenders input the same value b, then they all output b.

Proof. Termination follows obviously from soundness in Lemma 22. Now let us inspect
persistency, assuming all defenders have input b. Any i 2D would have gathered n¡ t
inputs when it invokes rule (1). At least (n¡ t)¡ t= n¡ 2t inputs came from defenders
and read b; at most t inputs came from cheaters and read b�. Hence i shall output b.

We proceed to check consistency. Suppose some i 2D outputs b 2 f0; 1g, then i has
received >n¡ 2t copies of b from broadcast. So by consistency of broadcast (Lemma 22),
there can be at most 2t players who had broadcast b. Therefore, every defender i02D shall
observe at most 2t <n¡ 2t copies of b, and thus would not output b. �

To boost the result to full consensus, we resort to the power of randomness. The
preliminary idea cannot be simpler: Any player who ends up with value ? will flip a fair
coin c2f0; 1g as his new value. Off you go. With probability >2¡n all defenders happen
to agree with each other. Hence, if we repeatedly alternate Weak-Consensus and the
coin flip for 2100n times, defenders arrive at consensus with very good chance!

Needless to say, this is unimaginably slow. The problem is that different players are
using independent coins. Can we couple their coins in hope of raising the agreement prob-
ability? In the synchronous setting there is a trivial solution: We may collect n coins from
different players via broadcasts, then add them up (modulo 2) to synthesize a shared
random coin. But in the asynchronous setting the solution gets problematic, as some
broadcasts might not terminate. If the players only wait for a subset to terminate, then
different players might decide on different subsets of coins for summation.

Fortunately, the inconsistency can be controlled stochastically. We illustrate the gist
in the protocol Async-Coin-Toss, assuming a large margin t= n

p
. We will show that

with constant probability " > 0, every defenders get the same coin value 1; with another
chance of " they all get 0; it can be a total mess with the remaining probability. Using
more sophisticated constructions and analyses, the corruption tolerance can be lifted to
t= b(n¡ 1)/4c without harming the probability guarantees.

Protocol Async-Coin-Toss

rule on event do
(0) started broadcast a uniform random r 2f¡1; 1g
(1) collected n¡ t values let Z be their sum and output 1fZ > 0g

Suppose i2D has collected values r1; : : : ; rn¡t. Without loss of generality, assume that
r1;:::; rn¡2t came from defenders. By central limit theorem, the partial sum Y :=

P
j=1
n¡2t rj

roughly follows normal distribution with expectation 0 and variance n¡2t=�(n). Hence
the event fY > 3 n

p
g happens with probability "> 0 independent of n. This implies

P(E) :=P(Z > 2 n
p

)> ":

Now take any i02D, who might have collected a different set of values and computed sum
Z 0. But the collections of i and i0 share at least n¡ 2t common values. The remaining

24 Section 6

values could bring about at most 2t difference, that is jZ 0¡Z j6 2t= 2 n
p

. Therefore,
conditional on event E, we always have Z 0> 0, thus i0 outputs 1.

To summarise: with probability at least ", all defenders output 1. By a symmetric
argument, with probability at least ", all defenders output 0.

Now we can present our asynchronous consensus protocol.

Protocol Async-Consensus

rule on event do
(>) started enter iteration h := 1
(h0) entered iteration h Async-Weak-Consensush

Async-Coin-Tossh
(h1) Async-Weak-Consensush!b

and Async-Coin-Tossh!c
update my value x :=

�
b b=/ ?
c b=?

enter iteration h+1
(?) entered iteration 100 output my value and terminate

Theorem 24. The protocol Async-Consensus terminates and is

� Consistent: all defenders output the same value with probability at least 1¡(1¡")100.

� Persistent: if all defenders input the same value x, then they all output x.

Exercise 6. Prove the theorem.

6.4 Asynchronous consensus: second version

In algorithmic terms, our first version of consensus protocol is a Monte Carlo procedure
that always terminates but allows some margin of error. We can turn it into a Las Vegas
procedure by �repeating until success�. The main technical difficulty is the detection of
success. With cheaters playing all around, how do we tell when consensus is attained? It
comes to mind that the �grade� in Graded-Consensus can help us decide. Below is just
a port of that protocol to the asynchronous setting.

Protocol Async-Graded-Consensus

rule on event do
(0) started Async-Broadcast my value
(1) collected n¡ t values let d0 count the 0's

let d1 count the 1's
b :=1fd1> d0g
� :=1fdb>n¡ 2tg
output (b; �) and halt

Given this, each iteration of Async-Consensus is fairly straightforward, as shown
by the diagram below. The same workflow is repeated over and over, with the new x in
the end replacing that in the beginning. Whenever player i have collected t+1 copies of
(done; a) for some a, it outputs a and terminates.

Asynchronous Broadcast and Consensus 25

Async-Weak-Consensus

x ∈ {0, 1,∅}

Async-Graded-Consensus

b ∈ {0, 1}

x ∈ {0, 1}

Async-Weak-Consensus

Async-Coin-Toss

c ∈ {0, 1}

σ ∈ {0, 1}
Async-Broadcast(done, b) if σ = 1

x :=

{
x x 6= ∅
c x = ∅

x ∈ {0, 1,∅}

Lemma 25. For Async-Graded-Consensus embedded in the protocol, we have:
� If some defender outputs (b; 1) then all defenders output either (b; 0) or (b; 1).
� If all defenders input the same value b then all defenders output (b; 1).

Proof.
� If some defender outputs (b; 1), then from his perspective db> n¡ 2t. We make two

parallel observations:
� Due to consistency of Async-Broadcast, all defenders shall eventually observe
n¡ 2t copies of b as well. Of course, they might have terminated earlier. But it's
safe to say that they do count >n¡ 3t copies of b before termination.

� Note that db> jC j, so some copy of b did come from a defender, say i 2D. By
consistency of the previous Async-Weak-Consensus, we know that no defender
had input b� to Async-Graded-Consensus. Hence any defender can count at
most jC j6 t copies of b�.

Since n¡ 3t > t by our choice of t, all defenders will output (b; �) as well.
� If all defenders input b, then any defender shall count >n¡2t copies of b and 6t copies

of b�. So he will output (b; 1). �

Now the main theorem easily follows.

Theorem 26. Our new version of Async-Consensus terminates with probability 1
(actually within constant phases in expectation). Upon termination, it is
� Consistent: all defenders output the same value.
� Persistent: if all defenders input the same value x, then they all output x.

Exercise 7. Prove the theorem.

26 Section 6

7 Asynchronous MPC
Assume t := b(n¡ 1)/4c. With the help of asynchronous broadcast and consensus, we can
design asynchronous MPC protocol. It roughly follows the framework in Section 5, which
we now review.
� Reliable-Refill
� each player generates a random value and shares it with degrees 6t and 62t.
� expand these randomness via hyperinvertible map;
� assemble some of the expanded randomness, abort if any inconsistency is observed;
� keep the remaining expanded randomness.

� Reliable-Distribute
� the distributer assembles a fresh randomness via Berlekamp-Welch, masks his secret,

and broadcasts the result;
� each player unmasks it locally.

� Reliable-Assemble reconstructs a secret towards every player, using Berlekamp-
Welch decoder.

� Multiply
� players locally perform multiplication c :=a � b and mask � := c¡ �+;
� players reliably assemble �;
� players locally unmask �+(�; : : : ; �).

Let's address the tricky points that we have highlighted. (i) Berlekamp-Welch decoder
has the potential of abortion, but luckily jD j>n¡ t > 3t> d+ t for d2ft; 2tg under our
assumption, so we are safe. (ii) Reliable-Refill is susceptible to abortion too, and this
time there's no lucky fix. (iii) Reliable-Distribute calls for broadcast which might not
terminate; but the problem is unsolvable since the distributer is a centralized role.

In the following we suppress problem (ii) by redesigning both Reliable-Refill and
Reliable-Distribute. Originally, the latter relies on the former, but now we will turn
the dependency around.

7.1 A new distribution protocol
Our new distribution protocol makes use of 2D polynomials; the added dimension allows
other players to verify the polynomial degree without compromising privacy. After the
check completes, the 2D polynomial is projected back to the familiar 1D case.

Let us introduce some terminology. A 2D polynomial f(x; y) of degree at most d is a
function that, for all fixed x; y 2F, both f(�; y) and f(x; �) are polynomials of degree at
most d. Define Fd

2(s) := ff : deg(f)6 d^ f(0; 0)= sg.

Protocol Async-Distribute

player on event do
(0) k started sample f 2Ft2(s) uniformly

send f(i; �); f(�; i) to each i
(1) any i got f(i; �); f(�; i) of degree 6t send vij := f(i; j) to each j

(2) any j got vij from i if vij= f(i; j) then
Async-Broadcast �j approves i�

(3) any j observed n¡ t players who
approve each other

record these players in my set K

(4) any j got 2t+1 many vij (i2K) s.t.
9g : deg(g)6 t with g(i)= vij

take my share as sj := g(0)

Asynchronous MPC 27

Remark 27. A defender j might not be able to make himself into K.

Lemma 28. Async-Distribute has similar guarantees to that of Async-Broadcast:

� Defenders either all get stuck, or all terminate and their shares lie on a polynomial of
degree at most t.

� If k2D then all defenders eventually terminate and their shares lie on the polynomial
f(�; 0)2Ft(s).

Proof. If k2D then obviously all defenders terminate. Next we consider the general case.
Assume defender j 2D terminates, so that he saw a set K of n¡ t mutually approving
players. All defenders will eventually receive these (broadcast) approvals by Lemma 22 and
activate (3). Since jD\K j>n¡2t>2t, there are always enough values to trigger (4), the
termination condition.

We move on to show the semantic claims. Suppose that a defender j 2D observed the
mutual-approval set K, and gathered fvijgi2I for some I �K: jI j=2t+1 with g(i)= vij
for polynomial g of degree 6t. We make several observations:

a) Note that D \K contains mutually approving defenders. So for a; b 2D \K, there
is no ambiguity to write vab. Moreover, due to condition in rule (1), the polynomials
f(a; �) and f(�; b) have degree 6t, thus the map (D \K)23 (a; b) 7! vab determines a
2D polynomial �(D\K)2 of degree 6t via Lagrange interpolation.

b) Similarly, the subset D \ I determines a 2D polynomial �(D\I)2 of degree 6t via
Lagrange interpolation.

c) Then observe that jD\ I j> t+1. But �(D\I)2 and �(D\K)2 agree on (D\ I)2, which
is enough to ensure �(D\I)2=�(D\K)2.

d) Finally and apparently, g(�)=�(D\I)2(�; j). Therefore sj := g(0)=�(D\I)2(0; j).

Now we put things together. For all defenders j ; j 02D, we have jD\K \K 0j>n¡ 3t>
t+1, thus �(D\K)2=�(D\K\K 0)2=�(D\K 0)2. We denote this unique 2D polynomial as �.
By observations (c) and (d) we have

sj=�(0; j):

Hence the shares for all j 2D do lie on a 1D polynomial of degree 6t. Moreover, it passes
through �(0; 0), which equals s if the distributer k 2D. �

Remark 29. Diagrammatically, the proof couples two defenders by the chain IKK 0$
I 0. The detour to K and K 0 is crucial: It is not possible to couple I and I 0 by a direct
counting argument.

7.2 Finding core set

Suppose every player is taking part in n parallel protocols P1; : : : ; Pn. The protocol Pk was
initiated by player k and satisfies the following termination conditions:

� If k 2D then every defender terminate in Pk;

� If k 2C then the defenders either all get stuck in Pk, or all terminate in Pk.

Clearly Async-Broadcast is an example.
The following protocol makes sure that the defenders agree on a set S �f1; : : : ; ng of

size >n¡ t such that all fPkgk2S terminate.

28 Section 7

Protocol Async-Core

player on event do
(0) any i terminated in protocol Pk input 0!Async-Consensusk

if i hasn't input to it yet
(1) any i fk :Async-Consensusk!0g

reaches size n¡ t
8k, input 1!Async-Consensusk
if i hasn't input to it yet

(2) any i finished in all
Async-Consensusk

output
fk :Async-Consensusk!0g

Lemma 30. Every defender i2D terminates in Async-Core (almost surely) and outputs
the same set S�f1; ::: ; ng. Moreover jS j>n¡ t and every defender eventually terminates
in protocols fPkgk2S.

Proof. First we show that every defender shall terminate in Async-Core. The argument
is arranged in steps:
� We claim that there exists a defender that invokes (1). Suppose to the contrary that

no defender ever invokes it. Let's take k 2D. By assumption, all defenders terminate
in Pk, so they will input 0 to Async-Consensusk via rule (0). (They cannot have
input 1 already since (1) is never invoked by assumption!) Now by Theorem 26, Async-
Consensusk almost surely outputs 0. This works for all k 2D, and jD j> n ¡ t is
enough to trigger (1), a contradiction.

� Once the very first defender invokes (1), we know fk :Async-Consensusk!0g has size
n¡ t. Due to consistency of Async-Consensus, all defenders can spot at least n¡ t
Async-Consensus's that output 0, eventually. So in fact all defenders will invoke (1).

� Rule (1) instructs the defenders to fill in all missing inputs. Again by Theorem 26, all
Async-Consensusk (k=1; : : : ; n) shall terminate almost surely and kick off rule (2).

Now that they terminate, clearly they output the same set S by consistency. As we have
pointed out, one (and thus every) defender fires rule (1), implying jS j>n¡ t.

It remains to argue that every defender shall terminate in fPkgk2S. Let's consider any
k 2S, so that Async-Consensusk!0. Observe there is at least one defender, say i2D,
who had input 0!Async-Consensusk; otherwise by persistency the output would be 1.
Why did i input 0? Because i terminated in protocol Pk. But then all defenders eventually
terminate in Pk by the guarantee of protocol Pk. �

7.3 A new refill protocol
Hopefully, the refill protocol manifests itself at this point.

Protocol Async-Refill

player on event do
(0) any i started Async-Distribute (denoted Pi) a random ri

and Async-Core on P1; : : : ; Pn
(1) any i Async-Core!S and

Pj! rj for all j 2S
compute (component i of) r :=

P
j2S rj

7.4 Debate of the model
Surely you can debate that the scheduler in the asynchronous model is too strong. Maybe
in reality, the scheduler (aka nature) can only delay a message up to 10 seconds. If that is
true, then we can use synchronous protocols with 10 seconds per round. Everything should
go perfectly. Why bother using asynchronous protocols?

Asynchronous MPC 29

Well, from a pragmatic view, a delay of 10 seconds is rare. Say 95% messages can arrive
within a second and only 1% messages need 10 seconds. But the synchronous model must
prepare for the worst case and spend 10 seconds per round! In contrast, an asynchronous
model is more flexible and adapts automatically to the delivery pace of messages, thus
statistically saving plenty of waiting time.

30 Section 7

	1 Preliminaries
	1.1 Goals
	1.2 Polynomials
	1.3 Lagrange interpolation

	2 Passive MPC
	2.1 Shamir sharing
	2.2 Computation
	2.3 Passive security

	3 Broadcast and Consensus
	3.1 Without setup
	3.2 With setup

	4 Active MPC
	4.1 Commitment Function
	4.2 Committed sharing
	4.3 State tracking
	4.4 Strengthening*

	5 Efficiency
	5.1 Hyperinvertible map
	5.2 Faster passive MPC
	5.3 Faster active MPC

	6 Asynchronous Broadcast and Consensus
	6.1 The asynchronous model
	6.2 Asynchronous broadcast
	6.3 Asynchronous consensus: first version
	6.4 Asynchronous consensus: second version

	7 Asynchronous MPC
	7.1 A new distribution protocol
	7.2 Finding core set
	7.3 A new refill protocol
	7.4 Debate of the model

