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We are interested in maintaining a partition of [n]. Initially every
element forms a class itself: {{1}, {2}, . . . , {n}}. Then a user may call
union(i, j) to merge the class containing i and the class containing j.
For example:

{{1}, {2}, {3}, {4}} →→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
union(2,3)

{{1}, {2,3}, {4}}

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
union(1,4)

{{1,4}, {2,3}}

→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→→ →
union(2,4)

{{1,2, 3, 4}}

At any time, each class has a distinct identifier. Via find(i) the user
may access the identifier of the class containing i. In particular, he
could figure out whether two elements i, j live in the same class by
comparing find(i) with find(j).
There is an elegant solution to the task, so compelling that it gets

named the union-find structure. It handles union and find operations
in amortisedO(𝛼(n)) time, where 𝛼(n) is the inverse Ackermann func-
tion. Since 𝛼(1035000)⩽5, we may treat 𝛼(n) essentially as a constant.
This structure stores each class in a separate tree. The root of the

tree serves as the identifier. Merging two classes amounts to linking
two trees together, and retrieving the identifier amounts to finding
the root. A preliminary version is described below:
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Algorithm 1

fn initialise()
for i=1, . . . ,n do

parent[i]≔⊥

fn find(i)
x≔ i
while parent[x]≠⊥ do

x≔parent[x]
return x



fn union(i, j)
x≔find(i)
y≔find(j)
parent[x]≔y {link tree x under tree y}

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Unfortunately, this version is susceptible to adversarial operation

sequence. Consider union(i, i+1) for i=1, . . . ,n−1 in order. The res-
ulting tree is a path of length n, which makes find operations highly
inefficient. To patch the issue, we introduce a rank value for each node.
At least for now, the rank reflects the height of the subtree. Upon
unions, we always link the root of smaller rank under the one of higher
rank. This way the resulting tree is balanced.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Algorithm 2

fn initialise()
for i=1, . . . ,n do

parent[i]≔⊥
rank[i]≔0

fn find(i)
x≔ i
while parent[x]≠⊥ do

x≔parent[x]
return x

fn union(i, j)
x≔find(i)
y≔find(j)
if rank[x]<rank[y] then

parent[x]≔y
else

parent[y]≔x
rank[x]≔max{rank[x], rank[y]+1}

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Note that every node x has at least 2rank[x] descendants (including

itself). Indeed, after initialisation every node has 1 ⩾ 20 descendant.
Throughout the time the number of descendents can only increase. But
rank[x] increases only at unions; in particular, only when rank[y] =



rank[x]. In that case, x receives the entire tree y as new descendants,
thus counting ⩾2rank[x] +2rank[y] =2rank′[x] in total by induction.
It follows that the maximum rank (hence the height) is at most

log n. So the cost of each operation is O(log n). This is already strik-
ingly good given the simplicity of the algorithm. But with one more
trick we could continue pushing its limit.
Currently, the find operation is the bottleneck. If one keeps calling

find(i) for some deep node i, then we will repeatedly spend time tra-
versing the path from i to the root. This redundant traversal can be
eliminated by path compression: As we go through the path, we re-link
every encountered node directly to the root. So next time if one calls
find() on any of these nodes, we can reach the root in one hop.
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The final algorithm is given below. We had isolated two “atomic”
operations compress(i, x) and link(x, y) that are useful in the analysis.
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Algorithm 3

fn initialise()
for i=1, . . . ,n do

parent[i]≔⊥
rank[i]≔0

fn find(i)
x≔ i
while parent[x]≠⊥ do

x≔parent[x]
compress(i, x)
return x

fn union(i, j)
link(find(i),find(j))



fn compress(i, x)
{assume i is a descendant of root x}
while i≠x do

parent[i]≔x
i≔parent[i]

fn link(x, y)
{assume x,y are roots}
if rank[x]<rank[y] then

parent[x]≔y
else

parent[y]≔x
rank[x]≔max{rank[x], rank[y]+1}

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

We remark that path compression does not update ranks. Hence, a
rank value reflects the exact tree height nomore, but instead an upper
bound on height.
We aim at the following claim: For any interleaving sequence of m

unions andm′ finds, the total cost is O((m+m′)𝛼(n)). So each opera-
tion runs in amortised O(𝛼(n)) time.
To untangle the analysis, let us replace every union(i, j) with three

operations x≔ find(i), y≔ find(j) and link(x, y). Then, we further
replace every find(i) with compress(i, x) where x is the root of node
i at the time of calling. Now we obtain an interleaving sequence of
2m+m′ compressions and m linkage. Apparently it is semantically
equivalent to the original sequence, and their costs are of the same
order (the only difference being the while-loop in the find operation,
whose cost can be charged to compression anyway.)
The manoeuvre is helpful because linkage is oblivious to compres-

sions. Indeed, a compression does not alter roots or ranks, so the
execution of linkage is totally unaffected. Hence we may postpone
all compressions after linkage, yet the cost remains the same. From
now on, we study a sequence 𝜎 of m linkage followed by 2m+m′ com-
pressions.

Ranks Lemma. The following properties hold throughout 𝜎.
(i) Ranks are strictly increasing along any leaf-to-root path.



(ii) For all r⩾0, there are at most n/2r nodes of rank r.

Proof. Linkage can only increase the rank of a root, which shall never
break monotonicity. Compression always points nodes to ancestors
which has higher rank by induction, so monotonicity is preserved.
These establish (i).
For property (ii), it suffices to consider the linking phase because

compressions do not meddle with ranks. Suppose there are N nodes
of rank r. Throughout linking phase, every such node has at least 2r

descendants. Moreover, no such node is an ancestor of another due to
(i). So they have disjoint subtrees which cover at least N ⋅ 2r nodes in
total. Consequently N⩽n/2r. □

Exercise. Show a variant of property (ii): For all r⩾ 1, there are at
most m/(2r−1) nodes of rank r.

Let rx be the rank of node x after the linking phase. (It equals the
height of tree x at the end of the linking phase, but the height may
decrease during the compression phase.) To analyse the cost of 𝜎, we
define two sets

Vlow ≔{x∈[n] : rx⩽𝜀} and Vhigh ≔{x∈[n] : rx⩾𝜀}

where 𝜀 is a small number to be specified later. Then we separate
three types of compressions:
1. those involving only Vlow;
2. those involving only Vhigh;
3. and those crossing from Vlow to Vhigh.

The general idea is as follows. Type-1 compressions are cheap because
𝜀 is small. Type-2 compressions are expensive in the beginning. But
as |Vhigh| is relatively small, all such nodes will soon be compressed to
the vicinity of the root, and later compressions become cheap. Type-
3 is a hybrid of the other two and can be treated likewise.
Specifically, let us consider every type-3 compress(i, x) in order.

We replace it with a type-1 compress(i, y) plus a type-2 compress(y,
x), where y is the unique node on path i↝x such that ry=𝜀. Although
the replacement produces a different tree, the cost does not change;
moreover, it does not reduce the cost of future compressions. There-
fore, after we have replaced all type-3 compressions, the cost of the
resulting sequence is an upper bound on the original cost.
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It remains to study a sequence of m1 type-1 and m2 type-2 com-
pressions, applied on an n-node forest of height h. Let T(m1+m2,n,h)
be the worst-case cost. By independence of the two types,

T(m1 +m2,n,h) = T(m1, |Vlow|, 𝜀) + T(m2, |Vhigh|,h−𝜀) (✠)

We bound the first term trivially by T(m1,n,𝜀). What about the second
term? The cost of each compression is one plus the number of parent
changes. So the combined cost is m2 plus the total number of parent
changes in Vhigh. A node can change its parent up to h− 𝜀 times by
property (i). And with 𝜀≔log h, the number of nodes is

|Vhigh|⩽�
r=𝜀

h n
2r <�

r=𝜀

∞ n
2r = n

2𝜀−1 = 2n
h

by property (ii). Hence T(m2, |Vhigh|,h−𝜀)⩽m2 + 2n
h (h−𝜀)<m2 +2n.

Summarising, we have

T(m1 +m2,n,h) ⩽ T(m1,n, 𝜀)+m2 +2n.

Subtracting m1 +m2 from both sides, we get

T(m1 +m2,n,h)− (m1 +m2)⩽(T(m1,n, 𝜀)−m1)+2n.

Recall 𝜀 = log h, so the height parameter becomes O(1) after log⋆h
repeated applications. It implies

T(m1 +m2,n,h)⩽m1 +m2 +2n log⋆h, (♠)



so each operation costsO(log⋆h) amortised time. (Ifm<n−1 thenwe
analyse each tree in the forest independently. Thus we can assume
m⩾n−1 and m1 +m2 =Ω(n).)
We should not rejoice yet: the bound is weaker than our promise.

But with this new insight we may refine the argument. In particular,
we can now bound (✠) via (♠):

T(m1 +m2,n,h) ⩽ T(m1,n, 𝜀) + m2 +2 |Vhigh| ⋅ log⋆h.

Choosing threshold 𝜀≔1+log(log⋆h)⩽log⋆h, we have

|Vhigh|< 2n
2𝜀−1 = 2n

log⋆h ,
which implies

T(m1 +m2,n,h)⩽T(m1,n, 𝜀)+m2 +2n.

The recursion has the same form as before, but the height decreases at
a much faster rate. Easily we can solve

T(m1 +m2,n,h)⩽m1 +m2 +2n log⋆⋆h.

This strengthens (♠) with an additional star operator. We can con-
tinue this line of refinements and bound the amortised running time
by O(log⋆⋅ ⋅ ⋅⋆n) for any number of star operators. Such function turns
out to be asymptotically less than the inverse Ackermann function.


