
ON STRING SUFFIXES

Yanheng Wang

Let s[1. . .n] be a string, and si≔ s[i. . .n] be its suffix starting from
position i. Wewant to sort s1,...,sn in lexicographic order. For example,
if s=aacab then we should output

s1 s4 s2 s5 s3
aacab < ab < acab < b < cab

or succinctly 1,4,2,5,3. This order has important applications in string-
related problems, as we will see later.

We employ a divide-and-conquer paradigm. Denote for conveni-
ence type(i)≔ i mod 3.
(i) sort suffixes si such that type(i)∈{1,2};
(ii) sort suffixes si such that type(i)=0;
(iii) merge the two sequences.
Of the three steps only (i) will be solved recursively. The other two
can be done in linear time given what (i) has computed. Specifically
for step (ii), we equate each si with a pair (s[i], si+1). Since type(i+
1)=1, the lexicographic order of si+1's were computed in (i) already.
So we can sort the pairs with one pass of RadixSort, which costs linear
time.

In step (iii), we merge two suffix sequences a1 < ⋅ ⋅ ⋅ < a2n/3 and
b1<⋅⋅⋅<bn/3 as inMergeSort. That is, we slide two pointers p∈[2n/3]
and q∈[n/3] from left to right. At each time we compare apwith bq. If
ap<bq then we ap is the next smallest and we increment p. Otherwise
bq is the next smallest and we increment q.

Howdowe compare apwith bq? Say ap=si and bq=sj. By definition
t≔type(i)∈{1,2} and type(j)=0. We first compare s[i...i+ t−1] with
s[j. . . j+ t−1], which takes constant time. If they are different then the
comparison completes. Otherwise we proceed to compare si+t with
sj+t. Since type(i+ t) ≡ 2 t≢ 0 and type(j+ t) = t≠ 0, the result can be
read from (i) directly.

It remains to implement step (i). Assume without loss of gener-
ality that type(n)=2. Construct a new string s′≔s[1...n]♦s[2...n]♦♦,
whose length is a multiple of three. Break it into substrings of three
characters, then obtain their lexicographic order r by RadixSort. See
below for an example.

s s′ r
aacab (aac)(ab♦)(aca)(b♦♦) 1,2,3, 4
aaaab (aaa)(ab♦)(aaa)(b♦♦) 1,2,1, 3

Call the first position in each substring a leader. Leaders always
correspond to type-1 and -2 positions in s, and vice versa. So for every
i : type(i)∈{1,2}, we can recover the suffix si by reading s′ from some
leader ℓ(i) till ♦.

In fact, the lexicographic order of the suffixes is preserved even if
we read till the end. More precisely, si<sj if and only if sℓ(i)′ <sℓ(j)′ . So
the problem reduces to sorting sℓ(1)′ , . . . ,sℓ(n)′ . It is equivalent to sorting
r1, . . . , r2n/3 where we interpret r as a string and ri≔ r[i. . .2n/3]. This
last task can be solved recursively.

The analysis of running time T(n) is straightforward. We have the
recursion

T(n)=T(2n/3)+O(n),

thus T(n)=O(n) ⋅∑i=1
∞ (2/3)i=O(n).

Longest common prefix. Now that we have ordered the suffixes
s𝜋(1) < ⋅ ⋅ ⋅ < s𝜋(n), it's time for applications. For convenience we write
𝜌(i)≔𝜋−1(i), representing the rank of si.

For strings a and bwe define

ℓ(a,b)≔max{ℓ : a[1. . .ℓ]=b[1. . .ℓ]},

that is the length of the longest common prefix of a and b. Our ulti-
mate goal is to pre-compute a data structure that allows answering
ℓ(si, sj) for arbitrary i, j in sublinear time. Without loss of generality
we assume 𝜌(i)<𝜌(j).

Observe that, for any strings a⩽b⩽c,

ℓ(a, c)=min{ℓ(a,b), ℓ(b, c)}. (1)

So inductively we have

ℓ(si, sj)=min{ℓ(s𝜋(r−1), s𝜋(r)) :𝜌(i)< r⩽𝜌(j)}. (2)

This motivates us to study Λ(r)≔ ℓ(s𝜋(r−1), s𝜋(r)) for r=2, . . . ,n. After
we collect these values, we build a segment tree on top, so later we
can answer query via (2) inO(logn) time. It is known that query time
can be reduced to O(1), but we shall not go into that.

How do we compute Λ(r)? The key property is that

Λ(𝜌(i+1))⩾Λ(𝜌(i))−1 for all i.

Despite its appalling look, the proof is rather simple. In Λ(𝜌(i)) we
care about the longest common prefix of si and its predecessor sj.
(j= 𝜋(𝜌(i)−1) if you insist.) Deleting their first character, we obtain
exactly si+1 and sj+1, with the common prefix length dropping by one.
In other words,

ℓ(sj+1, si+1)=Λ(𝜌(i))−1.

Now we look at Λ(𝜌(i+ 1)), which cares about the longest common
prefix of si+1 and its predecessor sk. Since sj < si, we have sj+1 ⩽ si+1;
consequently sj+1 ⩽ sk by definition of “predecessor”. Therefore,

Λ(𝜌(i+1))⩾ ℓ(sj+1, si+1)=Λ(𝜌(i))−1

where the inequality is due to (1).
The proof immediately leads to the following algorithm.

compute Λ(𝜌(1))
h≔Λ(𝜌(1))
for i=1, . . . ,n−1 do

k≔𝜋(𝜌(i+1)−1) {predecessor of i+1}
{si+1 and sk must agree on the first h−1 characters}
while si+1[h]= sk[h] do

h≔h+1
h≔h−1
Λ(𝜌(i+1))≔h

The initialisation of Λ(𝜌(1)) takes linear time. The cost of the loop
is the number m of increments plus the number m′ of decrements.
Trivially thatm′⩽n−1. Moreover, at any point of time we have h⩽n,
so m−m′⩽n for sure. This implies m+m′<3n.

Suffix tree. The suffix tree of s is a rooted tree where each edge
stores a substring. Denote path(v) as the concatenation of substrings
on the path root↝v. We require that, for each suffix si, there is a unique
node v such that path(v) = si. It is called the terminal of si. The pic-
ture below shows the suffix tree of s=acabcab.

a

b

c

b
c

c a b
a b c a b

a b c a b

c a b

a

b

cab

b
cabcab
cab

cab

cab

≡

We can readily obtain the lexicographic order of suffixes via a
depth-first traversal of the tree. At the same time, we can compute
Λ(r) for all r.

The backward conversion is also possible. We start with a rooted
tree with only one edge that stores s𝜋(1). The idea is to add other suf-
fixes to the tree in order. Suppose we have added s𝜋(1), . . . ,s𝜋(r−1) and
are about to add s𝜋(r). Let v be the terminal of s𝜋(r−1), and write for
simplicityΛ≔Λ(s𝜋(r−1),s𝜋(r)). We travel from v towards the root until
reaching a node u such that

|path(u)|⩽Λ.

So path(u) is a common prefix of s𝜋(r−1) and s𝜋(r). Moreover, the sub-
string t stored in the last visited edge uu′ must contain the position
where s𝜋(r−1) and s𝜋(r) start to differ. The longest common prefix of
the two is exactly path(u)∘ t[1. . .Λ− |path(u)|].

Hence, we subdivide the edge into uw and wu′ by creating a
new node w. They store the substrings of t before and after position
Λ− |path(u)|, respectively. Then we branch an edge wv′ that stores
s𝜋(r)[Λ+1. . .]. The vertex v′ is the terminal of s𝜋(r).

ab cab
v

insert
acabcab

a cabb

cabcab
u w u′

v′

What is the time complexity? In some iteration we might need to
spend linear time until we find u. But this shall forbid a large por-
tion of the tree from later access, so the amortised cost is low. More

formally, we say the iteration kills the nodes on path v↝u′. The cost
of the iteration is just the number of killed nodes plus O(1). Because
the killed path is never accessed later, each node can be killed at most
once. Therefore, the total cost is at most the number of nodes in the
suffix tree, plus O(n).

How many nodes are there? We have n terminals for sure. Let n′
count the number of other nodes. All other nodes (except root) have
degree at least three, so

2(n+n′−1)=�
v

deg(v)⩾n+3(n′−1).

Solving it gives n′⩽n+1. Hence n+n′⩽2n+1=O(n).
Stringmatching. Wewant to decide if the string s contains a given

pattern p as substring. Note that if p appear in s then it must appear in
some suffix. So we can detect it by walking from the root and always
moving to the branch that corresponds to the next character in p. If
we get stuck before p runs out, then no occurrence is found.

We can interpret the process as running parallel comparison
threads, where thread i tries to match p with s[i. . .i+|p|−1], or equi-
valently, decide if p is a prefix of si.

Actuallywe can retrieve loads of information in case that p appears
in s. Let v be the node that we end upwith; so path(v)=p. The number
of occurrences of p is captured by the number of terminals in the sub-
tree rooted at v. Moreover, from these terminals we can recover the
starting positions of the occurrences.

	Longest common prefix.
	Suffix tree.
	String matching.

