PRECISION SAMPLING

Yanheng Wang

March 28, 2024

Precision sampling, proposed by Andoni, Krauthgamer and Onak, is a method that estimates a sum using noisy observations of its summands. It can be formulated as a game. Alice keeps private values $a_1, \ldots, a_n \in [0, 1]$ and Bob wants to estimate their sum $\sigma := \sum_{i=1}^n a_i$. He tells Alice a tolerable deviation $d_i \ge 0$ for each $i \in [n]$, and she in response gives him noisy observations $\hat{a}_i = a_i \pm d_i$. Based on these, Bob should output an estimate $\hat{\sigma}$ such that $\frac{1-\varepsilon}{1+\varepsilon}\sigma - \delta \le \hat{\sigma} \le \frac{1+\varepsilon}{1-\varepsilon}\sigma + \delta$, where $\varepsilon, \delta \ge 0$ are prescribed error parameters.

Of course, if Bob requests $d_i \leq \delta/n$ for all $i \in [n]$ then he can just sum up the observations to get a good estimate. But this strategy takes toll on Alice's side, for generally, the cost of an observation inversely relates to the deviation d_i . Think Alice as a measuring instrument: the higher precision we demand, the more resource she needs. Now Bob wonders: Is there a better strategy that saves Alice's cost?

Precision Sampling Lemma. Fix $1/2 \ge \varepsilon > 0$ and $\delta \ge 0$ and write $\ell := 10/\varepsilon^2 \delta$. Consider the following strategy of Bob.

```
fn setup()

for i = 1, ..., n do

| sample independent u_{i1}, ..., u_{i\ell} \sim \text{Uniform}(0, 1)

| let d_i \coloneqq \min \{u_{i1}, ..., u_{i\ell}\}

send d_1, ..., d_n to Alice

fn sum(\hat{a}_1, ..., \hat{a}_n)

for i = 1, ..., n do

| let s_i count the number of j \in [\ell] \colon u_{ij} \leq \varepsilon \hat{a}_i

output \hat{\sigma} \coloneqq \frac{1}{\varepsilon \ell} \cdot \sum_{i=1}^n s_i
```

Then with probability at least $^{3}/_{5}$ (regardless of the concrete values returned by Alice), Bob outputs $\frac{1-\varepsilon}{1+\varepsilon}\sigma - \delta \leq \hat{\sigma} \leq \frac{1+\varepsilon}{1-\varepsilon}\sigma + \delta$.

Remark. For the sake of comparison, let's assume that the total observation cost of Alice is $\sum_{i=1}^{n} d_i^{-1}$. If we choose $d_i := \delta/n$ deterministically for all $i \in [n]$, then the cost would be $\Theta(n^2/\delta)$. What would be the cost if we choose d_i as in the precision sampling lemma?

Note that each d_i follows probability density $f(x) = \ell (1-x)^{\ell-1}$. In most applications we have $\ell = O(n^3)$, so $\mathbb{P}(d_i < n^{-5}) \leq \ell n^{-5} = o(n^{-2})$. Hence it is quite certain that $d_i \geq n^{-5}$ for all $i \in [n]$ simultaneously. Calling this event E, we can now bound $\mathbb{E}(d_i^{-1} | E) \leq 2\ell \int_{n^{-5}}^1 x^{-1} dx = O(\ell \log n)$, thus $\mathbb{E}(\sum_{i=1}^n d_i^{-1} | E) = O(\ell n \log n)$. It has better dependency on n and the same dependency on δ .

Proof. Our plan is to show that $\mathbb{E}(\hat{\sigma}) = \frac{1}{\varepsilon \ell} \sum_{i=1}^{n} \mathbb{E}(s_i)$ is roughly σ , and that $\hat{\sigma}$ concentrates around its mean. However, since the \hat{a}_i 's may adversarially depend on d_i 's, it is difficult to analyse $\mathbb{E}(s_i)$ directly. The trick is to sandwich the variables by more amenable ones. For $i \in [n]$ and $j \in [\ell]$ we define

$$\begin{split} X_{ij} &:= \mathbf{1} \Big\{ u_{ij} \leqslant \frac{\varepsilon a_i}{1 + \varepsilon} \Big\}, \\ S_{ij} &:= \mathbf{1} \{ u_{ij} \leqslant \varepsilon \hat{a}_i \}, \\ Y_{ij} &:= \mathbf{1} \Big\{ u_{ij} \leqslant \frac{\varepsilon a_i}{1 - \varepsilon} \Big\}. \end{split}$$

Observe that $X_{ij} \leq S_{ij} \leq Y_{ij}$. Indeed, if $X_{ij} = 1$ then $(1 + \varepsilon) u_{ij} \leq \varepsilon a_i$, thus

$$u_{ij} \leq \varepsilon \left(a_i - u_{ij} \right) \leq \varepsilon \left(a_i - d_i \right) \leq \varepsilon \, \hat{a}_i$$

which means $S_{ij} = 1$. Similarly, if $S_{ij} = 1$ then

$$u_{ij} \leq \varepsilon \, \hat{a}_i \leq \varepsilon \, (a_i + d_i) \leq \varepsilon \, (a_i + u_{ij}),$$

so $u_{ij} \leq \varepsilon a_i / (1 - \varepsilon)$ and thus $Y_{ij} = 1$. It immediately follows that

$$\left(X := \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} X_{ij}}{\varepsilon \ell}\right) \leqslant \hat{\sigma} \leqslant \left(Y := \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} Y_{ij}}{\varepsilon \ell}\right)$$

Now we turn to study the behaviours of *X* and *Y*. We calculate

$$\mathbb{E}(X) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \varepsilon a_i / (1+\varepsilon)}{\varepsilon \ell} = \frac{\sigma}{1+\varepsilon},$$
$$\mathbb{E}(Y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \varepsilon a_i / (1-\varepsilon)}{\varepsilon \ell} = \frac{\sigma}{1-\varepsilon}.$$

Similarly, using independence,

$$\operatorname{Var}(X) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \operatorname{Var}(X_{ij})}{(\varepsilon \,\ell)^2} \leqslant \frac{\mathbb{E}(X)}{\varepsilon \,\ell} = \frac{\varepsilon \,\delta \,\mathbb{E}(X)}{10},$$
$$\operatorname{Var}(Y) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{\ell} \operatorname{Var}(Y_{ij})}{(\varepsilon \,\ell)^2} \leqslant \frac{\mathbb{E}(Y)}{\varepsilon \,\ell} = \frac{\varepsilon \,\delta \,\mathbb{E}(Y)}{10}.$$

To proceed, we distinguish two cases. If the sum is large, specifically $\sigma \ge \delta/\varepsilon$, then we can bound the probability that *X*, *Y* deviate from σ multiplicatively:

$$\mathbb{P}(|X - \mathbb{E}X| \ge \varepsilon \mathbb{E}X) \le \frac{\operatorname{Var}(X)}{\varepsilon^2 \mathbb{E}^2(X)} \le \frac{\delta}{10 \varepsilon \mathbb{E}(X)} \le \frac{\delta}{5 \varepsilon \sigma} \le \frac{1}{5};$$

similar for *Y*. Therefore, with probability at least $\frac{3}{5}$ both *X* and *Y* are within $(1 \pm \varepsilon)$ times their respective expectations. In such event, we have

$$\frac{1-\varepsilon}{1+\varepsilon}\sigma \leqslant \hat{\sigma} \leqslant \frac{1+\varepsilon}{1-\varepsilon}\sigma$$

as desired.

It remains to consider the case when the sum is small: $\sigma < \delta/\varepsilon$. Due to the small expectations, we can only bound additive deviations:

$$\mathbb{P}(|X - \mathbb{E}X| \ge \delta) \leqslant \frac{\operatorname{Var}(X)}{\delta^2} \leqslant \frac{\varepsilon \mathbb{E}(X)}{10 \, \delta} \leqslant \frac{\varepsilon \, \sigma}{5 \, \delta} < \frac{1}{5};$$

similar for *Y*. Therefore, with probability at least $\frac{3}{5}$ both *X* and *Y* are within $\pm \delta$ of their respective expectations. In such event, we have

$$\frac{1}{1+\varepsilon}\sigma-\delta\!\leqslant\!\hat{\sigma}\!\leqslant\!\frac{1}{1-\varepsilon}\sigma+\delta$$

as desired.

Extensions. We did not present the lemma in its full generality. A few extensions are possible. First, we may allow observation \hat{a}_i to deviate from truth a_i multiplicatively. That is, we allow Alice returning

$$\frac{a_i}{\gamma} - d \leqslant \hat{a}_i \leqslant \gamma a_i + d$$

for some constant $\gamma \ge 1$. The lemma still holds except that the output is affected by a γ -factor:

$$\frac{1-\varepsilon}{(1+\varepsilon)\gamma}\sigma - \delta \leqslant \hat{\sigma} \leqslant \frac{(1+\varepsilon)\gamma}{1-\varepsilon}\sigma + \delta.$$

Second, we need not memorise all the uniform variables u_{ij} 's; it suffices to remember the w_i 's. When we run function sum(), we generate *fresh* variables u_{ij} conditioned on min $\{u_{i1}, ..., u_{i\ell}\} = d_i$. If we treat the processes setup() and sum() as a whole, then $u_{i1}, ..., u_{i\ell}$ are indeed independent uniform random variables over (0, 1), so the proof gets through.

Finally, the randomness in sum() can be removed altogether. The idea is to redefine $s_i := \mathbb{E}(\sum_{j \in [\ell]} S_{ij} | d_i)$. Apparently $\mathbb{E}(s_i) = \mathbb{E}(\sum_{j=1}^{\ell} S_{ij})$; it is also well known that conditioning reduces variance: $\operatorname{Var}(s_i) \leq \operatorname{Var}(\sum_{j=1}^{\ell} S_{ij})$. So $\hat{\sigma}$ should still concentrate around σ . Unfortunately, it is impossible to compute s_i in the first place. But luckily, one can approximate it from two sides. Note that

$$\mathbb{E}\left(\sum_{j\in[\ell]} X_{ij} \middle| d_i\right) = \begin{cases} 0 & \text{if } d_i > \frac{\varepsilon a_i}{1+\varepsilon}, \\ 1+(\ell-1)\frac{\varepsilon a_i/(1+\varepsilon)-d_i}{1-d_i} & \text{otherwise,} \end{cases}$$

and

$$\mathbb{E}\left(\sum_{j\in[\ell]}Y_{ij}\middle|d_i\right) = \begin{cases} 0 & \text{if } d_i > \frac{\varepsilon a_i}{1-\varepsilon},\\ 1+(\ell-1)\frac{\varepsilon a_i/(1-\varepsilon)-d_i}{1-d_i} & \text{otherwise.} \end{cases}$$

Hence, if we set instead

$$s_i := \begin{cases} 0 & \text{if } d_i > \varepsilon \hat{a}_i, \\ 1 + (\ell - 1) \frac{\varepsilon \hat{a}_i - d_i}{1 - d_i} & \text{otherwise,} \end{cases}$$

then $\hat{\sigma}$ is sandwiched between two values concentrated around σ .

Application. Let us showcase the precision sampling lemma in the context of *p*-th moment estimation (*p*>2). The task is to maintain a vector $x \in \mathbb{R}^n$ that initialises to **0** within o(n) space. We support the update operation $\operatorname{add}(i, \Delta)$ which adds value $\Delta \in \mathbb{R}$ to entry x_i . In the end we should output a multiplicative approximation to $||x||_p^p := \sum_{i=1}^n |x_i|^p$.

Fix parameter $\varepsilon > 0$ that controls the output quality. One could estimate $||\mathbf{x}||_2$ within $(1 \pm \frac{1}{p})$ multiplicative error using polylog(*n*) space via an algorithm by Alon, Matias and Szegedy. So after proper scaling we may assume $||\mathbf{x}||_2 \in [1 - \frac{1}{p}, 1]$, in particular $a_i := |x_i|^p \in [0,$ 1] for all $i \in [n]$. Furthermore, it follows from Hölder's inequality that $||\mathbf{x}||_p^p \ge ||\mathbf{x}||_2^p / n^{p/2-1} \ge \frac{1}{en^{p/2-1}}$. Hence, by choosing $\delta := \frac{\varepsilon}{en^{p/2-1}}$, any *additive* $\pm \delta$ error to $||\mathbf{x}||_p^p$ transfers to at most a *multiplicative* $1 \pm \varepsilon$ error.

Here we lay the plan. First we play Bob's strategy to generate the deviations d_1, \ldots, d_n . Then we pretend to be Alice and manage the updates. In the end we as Alice must produce noisy observations \hat{a}_i that deviate from truths a_i by at most multiplicative $1 \pm \varepsilon$ and additive $\pm d_i$. Finally we switch back to Bob and output an estimate $\hat{\sigma}$ to $\sum_{i=1}^{n} a_i = \|\mathbf{x}\|_p^p$. The precision sampling lemma guarantees $\frac{(1-\varepsilon)^2}{1+\varepsilon} \|\mathbf{x}\|_p^p \leq \hat{\sigma} \leq \frac{(1+\varepsilon)^2}{1-\varepsilon} \|\mathbf{x}\|_p^p$ with decent probability.

It remains to specify how to play Alice's role. Let us generate a pairwise independent function $h:[n] \rightarrow [m]$ that maps indices to bins. Independent of h, we sample another pairwise independent function $\operatorname{sgn}:[n] \rightarrow \{+1, -1\}$. Create variables V_1, \ldots, V_m that are initially zero. Upon update $\operatorname{add}(i, \Delta)$ we increase $V_{h(i)}$ by $\frac{\operatorname{sgn}(i)\Delta}{d_i^{1/p}}$. After finishing all the updates, we would have

$$V_b \coloneqq \sum_{i \in h^{-1}(b)} \frac{\operatorname{sgn}(i) x_i}{d_i^{1/p}}$$

for each bin $b \in [m]$. We return

 $\hat{a}_i := d_i |V_{h(i)}|^p$

for each $i \in [n]$ as noisy observations.

Lemma. Take $m := (4p \varepsilon^{1/p-1} \ell^{1/p})^2$. Then for any fixed $i \in [n]$ we have $\hat{a}_i = (1 \pm \varepsilon) a_i \pm d_i$ with probability at least $\frac{3}{4}$.

Proof. To gain some intuition, imagine that no collision occurs in bin h(i). Then $\hat{a}_i = d_i \left| \frac{\operatorname{sgn}(i) x_i}{d_i^{1/p}} \right|^p = |x_i|^p = a_i$ is an exact observation. But in reality there are plenty of collisions since $m \ll n$. If d_i is small then x_i contributes heavily to V_b , so the noise due to collision is negligible. On the other hand, if d_i is large then the noise might drown x_i , but it does not matter since we tolerate a large additive deviation.

Formally, let us expand the definition of \hat{a}_i :

$$\hat{a}_{i} = d_{i} \left| \sum_{j \in h^{-1}(b)} \frac{\operatorname{sgn}(j) x_{j}}{d_{j}^{1/p}} \right|^{p} = \left| \operatorname{sgn}(i) x_{i} + d_{i}^{1/p} \sum_{j \neq i: h(j) = h(i)} \frac{\operatorname{sgn}(j) x_{j}}{d_{j}^{1/p}} \right|^{p}.$$

Denote the big sum by Σ , then

$$\hat{a}_i = (|x_i| \pm d_i^{1/p} |\Sigma|)^p.$$
(1)

Towards showing $\hat{a}_i \approx a_i$, let us bound the variance of noise Σ :

$$\mathbb{E}(\Sigma^2) = \mathbb{E}\left[\left(\sum_{j\neq i} \mathbf{1}\{h(j) = h(i)\} \cdot \frac{\operatorname{sgn}(j) x_j}{d_j^{1/p}}\right)^2\right]$$
$$= \sum_{j\neq i} \mathbb{E}\left[\mathbf{1}\{h(j) = h(i)\} \cdot \frac{x_j^2}{d_j^{2/p}}\right]$$
$$= \sum_{j\neq i} \frac{x_j^2}{m} \mathbb{E}(d_j^{-2/p})$$
$$\leqslant \frac{\ell^{2/p}}{m} = \frac{1}{(4n\epsilon^{1/p-1})^2}$$

Here in the second line, we expanded the square and noticed that a pair $\{j, j'\}$ contributes zero in expectation if $j \neq j'$. The fourth line follows from the precision sampling lemma and $||x||_2 \leq 1$. With the variance controlled, we apply Chebyshev to obtain

$$\mathbb{P}\left(|\Sigma| > \frac{1}{2p\varepsilon^{1/p-1}}\right) \leq \frac{1}{4}.$$

Now we assume $|\Sigma| \leq \frac{1}{2p\epsilon^{1/p-1}} \ll 1$ and get back to (1). Let us split two cases:

- (i) $d_i^{1/p} |\Sigma| \leq \frac{\varepsilon}{2p} |x_i|$, so the noise-signal ratio is low. We derive $\hat{a}_i = \left[\left(1 \pm \frac{\varepsilon}{2p}\right) |x_i|\right]^p \leq (1 \pm \varepsilon) a_i$.
- (ii) $d_i^{1/p} |\Sigma| > \frac{\varepsilon}{2p} |x_i|$, so the noise-signal ratio is high. But since we assumed that the noise amplitude $|\Sigma|$ is tiny, the signal amplitude $|x_i|$ must be tiny too. Hence the additive deviation $|\hat{a}_i a_i|$ should not be large.

To be precise, the assumptions imply $|x_i| < \frac{2p |\Sigma| d_i^{1/p}}{\varepsilon} \leq (d_i / \varepsilon)^{1/p}$. We bound

$$\begin{split} \hat{a}_{i} - a_{i} &\leq (|x_{i}| + d_{i}^{1/p} |\Sigma|)^{p} - |x_{i}|^{p} \\ &\leq \left(|x_{i}| + \frac{d_{i}^{1/p}}{2 p \varepsilon^{1/p-1}}\right)^{p} - |x_{i}|^{p} \\ &\leq \left[\left(\frac{d_{i}}{\varepsilon}\right)^{1/p} + \frac{d_{i}^{1/p}}{2 p \varepsilon^{1/p-1}}\right]^{p} - \frac{d_{i}}{\varepsilon} \\ &\leq \frac{d_{i}}{\varepsilon} \left[\left(1 + \frac{\varepsilon}{2 p}\right)^{p} - 1\right] \leq d_{i}. \end{split}$$

Here the third line used that $z \mapsto (z + c)^p - z^p$ is monotonically increasing on $[-c, \infty)$, where $c \ge 0$.

For the inverse difference, we bound

$$a_{i} - \hat{a}_{i} \leq |x_{i}|^{p} - (|x_{i}| - d_{i}^{1/p} |\Sigma|)^{p}$$

$$\leq (|x_{i}| + d_{i}^{1/p} |\Sigma|)^{p} - |x_{i}|^{p}$$

$$\leq d_{i}$$

where the second line used convexity of $z \mapsto (z+c)^p$, and the third line follows from previous calculations.

Of course, the success probability ${}^{3}/_{4}$ is not enough for union bound over all indices $i \in [n]$. But we can easily boost the probability to $1 - 1/n^{2}$ by taking the median result of $\Theta(\log n)$ independent threads. This concludes the description and analysis for Alice.