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Precision sampling, proposed by Andoni, Krauthgamer and Onak,
is a method that estimates a sum using noisy observations of its sum-
mands. It can be formulated as a game. Alice keeps private values
a1, . . . , an ∈ [0, 1] and Bob wants to estimate their sum 𝜎 ≔ ∑i=1

n ai.
He tells Alice a tolerable deviation di ⩾ 0 for each i∈ [n], and she in
response gives him noisy observations a î=ai±di. Based on these, Bob
should output an estimate �̂� such that 1−𝜀

1+𝜀 𝜎−𝛿⩽�̂� ⩽ 1+𝜀
1−𝜀 𝜎 +𝛿, where

𝜀, 𝛿⩾0 are prescribed error parameters.
Of course, if Bob requests di ⩽ 𝛿/n for all i∈ [n] then he can just

sumup the observations to get a good estimate. But this strategy takes
toll on Alice's side, for generally, the cost of an observation inversely
relates to the deviation di. Think Alice as a measuring instrument:
the higher precision we demand, the more resource she needs. Now
Bob wonders: Is there a better strategy that saves Alice's cost?

Precision Sampling Lemma. Fix /1 2 ⩾ 𝜀 > 0 and 𝛿 ⩾ 0 and write ℓ ≔
10/𝜀2 𝛿. Consider the following strategy of Bob.

fn setup()
for i=1, . . . ,n do

sample independent ui1, . . . ,uiℓ∼Uniform(0,1)
let di≔min{ui1, . . . ,uiℓ}

send d1, . . . ,dn to Alice

fn sum(a1̂, . . . ,an̂)
for i=1, . . . ,n do

let si count the number of j∈[ℓ] :uij⩽𝜀a î
output �̂� ≔ 1

𝜀 ℓ ⋅∑i=1
n si

Thenwith probability at least /3 5 (regardless of the concrete values
returned by Alice), Bob outputs 1−𝜀

1+𝜀 𝜎 −𝛿⩽�̂� ⩽ 1+𝜀
1−𝜀 𝜎 +𝛿.



Remark. For the sake of comparison, let's assume that the total obser-
vation cost of Alice is ∑i=1

n di−1. If we choose di≔𝛿/n deterministically
for all i∈[n], then the cost would be Θ(n2/𝛿). What would be the cost
if we choose di as in the precision sampling lemma?

Note that each di follows probability density f (x)= ℓ (1−x)ℓ−1. In
most applications we have ℓ =O(n3), so ℙ(di <n−5) ⩽ ℓ n−5 = o(n−2).
Hence it is quite certain that di ⩾ n−5 for all i∈ [n] simultaneously.
Calling this event E, we can now bound 𝔼(di−1 | E) ⩽ 2 ℓ ∫n−5

1 x−1 dx=
O(ℓ logn), thus𝔼(∑i=1

n di−1 |E)=O(ℓn logn). It has better dependency
on n and the same dependency on 𝛿.

Proof. Our plan is to show that 𝔼(�̂�) = 1
𝜀 ℓ ∑i=1

n 𝔼(si) is roughly 𝜎 ,
and that �̂� concentrates around its mean. However, since the a î's may
adversarially depend on di's, it is difficult to analyse 𝔼(si) directly.
The trick is to sandwich the variables by more amenable ones. For
i∈[n] and j∈[ℓ] we define

Xij ≔ 𝟏�uij⩽
𝜀ai

1+𝜀�,

Sij ≔ 𝟏{uij⩽𝜀a î},
Yij ≔ 𝟏�uij⩽

𝜀ai
1−𝜀�.

Observe that Xij⩽Sij⩽Yij. Indeed, if Xij=1 then (1+𝜀)uij⩽𝜀ai, thus

uij⩽𝜀(ai−uij)⩽𝜀(ai−di)⩽𝜀a î

which means Sij=1. Similarly, if Sij=1 then

uij⩽𝜀a î⩽𝜀(ai+di)⩽𝜀(ai+uij),

so uij⩽𝜀ai/(1−𝜀) and thus Yij=1. It immediately follows that

(((((((((((((((((X≔
∑i=1

n ∑j=1
ℓ Xij

𝜀 ℓ )))))))))))))))))⩽�̂� ⩽(((((((((((((((((Y≔
∑i=1

n ∑j=1
ℓ Yij

𝜀 ℓ )))))))))))))))))
Now we turn to study the behaviours of X and Y. We calculate

𝔼(X)=
∑i=1

n ∑j=1
ℓ 𝜀ai/(1+𝜀)

𝜀 ℓ = 𝜎
1+𝜀,

𝔼(Y)=
∑i=1

n ∑j=1
ℓ 𝜀ai/(1−𝜀)

𝜀 ℓ = 𝜎
1−𝜀 .



Similarly, using independence,

Var(X)=
∑i=1

n ∑j=1
ℓ Var(Xij)

(𝜀 ℓ)2 ⩽ 𝔼(X)
𝜀 ℓ = 𝜀𝛿𝔼(X)

10 ,

Var(Y)=
∑i=1

n ∑j=1
ℓ Var(Yij)

(𝜀 ℓ)2 ⩽ 𝔼(Y)
𝜀 ℓ = 𝜀𝛿𝔼(Y)

10 .

To proceed, we distinguish two cases. If the sum is large, specific-
ally 𝜎 ⩾𝛿/𝜀, then we can bound the probability that X,Y deviate from
𝜎 multiplicatively:

ℙ(|X−𝔼X|⩾𝜀𝔼X)⩽ Var(X)
𝜀2 𝔼2(X)

⩽ 𝛿
10𝜀𝔼(X) ⩽ 𝛿

5𝜀𝜎 ⩽ 1
5;

similar for Y. Therefore, with probability at least /3 5 both X and Y are
within (1 ± 𝜀) times their respective expectations. In such event, we
have

1−𝜀
1+𝜀 𝜎 ⩽�̂� ⩽ 1+𝜀

1−𝜀 𝜎

as desired.
It remains to consider the case when the sum is small: 𝜎 <𝛿/𝜀. Due

to the small expectations, we can only bound additive deviations:

ℙ(|X−𝔼X|⩾𝛿)⩽ Var(X)
𝛿2 ⩽ 𝜀𝔼(X)

10𝛿 ⩽ 𝜀𝜎
5𝛿 < 1

5;

similar for Y. Therefore, with probability at least /3 5 both X and Y are
within ±𝛿 of their respective expectations. In such event, we have

1
1+𝜀 𝜎 −𝛿⩽�̂� ⩽ 1

1−𝜀 𝜎 +𝛿

as desired. □

Extensions. We did not present the lemma in its full generality.
A few extensions are possible. First, we may allow observation a î to
deviate from truth aimultiplicatively. That is, we allowAlice returning

ai
𝛾 −d⩽ âi⩽𝛾ai+d



for some constant 𝛾 ⩾1. The lemma still holds except that the output
is affected by a 𝛾-factor:

1−𝜀
(1+𝜀)𝛾 𝜎 −𝛿⩽�̂� ⩽ (1+𝜀)𝛾

1−𝜀 𝜎 +𝛿.

Second, we need not memorise all the uniform variables uij's; it
suffices to remember the wi's. When we run function sum(), we gen-
erate fresh variables uij conditioned on min{ui1,...,uiℓ}=di. If we treat
the processes setup() and sum() as a whole, then ui1,...,uiℓ are indeed
independent uniform random variables over (0, 1), so the proof gets
through.

Finally, the randomness in sum() can be removed altogether. The
idea is to redefine si≔𝔼�∑j∈[ℓ]Sij � di�. Apparently𝔼(si)=𝔼�∑j=1

ℓ Sij�;
it is also well known that conditioning reduces variance: Var(si) ⩽
Var�∑j=1

ℓ Sij�. So �̂� should still concentrate around 𝜎. Unfortunately,
it is impossible to compute si in the first place. But luckily, one can
approximate it from two sides. Note that

𝔼(((((((((((((( �
j∈[ℓ]

Xij ||||||||||||||||| di))))))))))))))={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{ 0 if di>

𝜀 ai
1+𝜀 ,

1+(ℓ−1) 𝜀 ai/(1+𝜀)−di
1−di

otherwise,
and

𝔼(((((((((((((( �
j∈[ℓ]

Yij ||||||||||||||||| di))))))))))))))={{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{ 0 if di>

𝜀 ai
1−𝜀 ,

1+(ℓ−1) 𝜀 ai/(1−𝜀)−di
1−di

otherwise.

Hence, if we set instead

si≔{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{ 0 if di>𝜀a î,

1+(ℓ−1) 𝜀 a î−di
1−di

otherwise,

then �̂� is sandwiched between two values concentrated around 𝜎.
Application. Let us showcase the precision sampling lemma in

the context of p-th moment estimation (p>2). The task is to maintain
a vector 𝒙 ∈ℝn that initialises to 𝟎 within o(n) space. We support the
update operation add(i, Δ) which adds value Δ ∈ ℝ to entry xi. In
the end we should output a multiplicative approximation to ‖𝒙‖p

p ≔
∑i=1

n |xi|p.



Fix parameter 𝜀 > 0 that controls the output quality. One could
estimate ‖𝒙‖2 within �1 ± /1 p� multiplicative error using polylog(n)
space via an algorithm by Alon, Matias and Szegedy. So after proper
scaling we may assume ‖𝒙‖2 ∈ �1− /1 p, 1�, in particular ai ≔ |xi|p ∈ [0,
1] for all i∈[n]. Furthermore, it follows fromHölder's inequality that
‖𝒙‖p

p⩾‖𝒙‖2
p/np/2−1⩾ 1

enp/2−1 . Hence, by choosing 𝛿≔ 𝜀
enp/2−1 , any additive

±𝛿 error to ‖𝒙‖p
p transfers to at most a multiplicative 1±𝜀 error.

Here we lay the plan. First we play Bob's strategy to generate
the deviations d1, . . . , dn. Then we pretend to be Alice and manage
the updates. In the end we as Alice must produce noisy observa-
tions âi that deviate from truths ai by at most multiplicative 1±𝜀 and
additive±di. Finallywe switch back to Bob and output an estimate �̂� to
∑i=1

n ai=‖𝒙‖p
p. The precision sampling lemma guarantees (1−𝜀)2

1+𝜀 ‖𝒙‖p
p⩽

�̂� ⩽ (1+𝜀)2

1−𝜀 ‖𝒙‖p
p with decent probability.

It remains to specify how to play Alice's role. Let us generate a
pairwise independent function h : [n]→[m] that maps indices to bins.
Independent of h, we sample another pairwise independent function
sgn : [n]→{+1,−1}. Create variables V1, . . . ,Vm that are initially zero.
Upon update add(i, Δ) we increase Vh(i) by

sgn(i)Δ
di

1/p . After finishing all
the updates, we would have

Vb≔ �
i∈h−1(b)

sgn(i)xi
di

1/p

for each bin b∈[m]. We return
a î≔di |Vh(i)|p

for each i∈[n] as noisy observations.

Lemma. Takem≔(4p𝜀1/p−1 ℓ1/p)2. Then for any fixed i∈[n] we have
a î=(1±𝜀)ai±di with probability at least /3 4.

Proof. To gain some intuition, imagine that no collision occurs in bin
h(i). Then a î = di �

sgn(i)xi
di

1/p �
p
= |xi|p = ai is an exact observation. But in

reality there are plenty of collisions since m≪ n. If di is small then
xi contributes heavily to Vb, so the noise due to collision is negligible.
On the other hand, if di is large then the noise might drown xi, but
it does not matter since we tolerate a large additive deviation.



Formally, let us expand the definition of a î:

a î = di ||||||||||||||||||
||
|
| �
j∈h−1(b)

sgn(j)xj
dj

1/p ||||||||||||||||||
||
|
|p = ||||||||||||||||||

||
|
|sgn(i)xi + di

1/p �
j≠i:h(j)=h(i)

sgn(j)xj
dj

1/p ||||||||||||||||||
||
|
|p.

Denote the big sum by Σ, then

a î=�|xi|±di
1/p |Σ|�p. (1)

Towards showing a î≈ai, let us bound the variance of noise Σ:

𝔼(Σ2) = 𝔼[[[[[[[[[[[[[[[[[
[[
[
[
((((((((((((((((((
(�
j≠i

𝟏{h(j)=h(i)} ⋅ sgn(j)xj
dj

1/p ))))))))))))))))))
)2

]]]]]]]]]]]]]]]]]
]]
]
]

= �
j≠i

𝔼[[[[[[[[[[[[[[[[[
[[
[
[𝟏{h(j)=h(i)} ⋅

xj2

dj
2/p]]]]]]]]]]]]]]]]]

]]
]
]

= �
j≠i

xj2

m 𝔼�dj
−2/p�

⩽ ℓ2/p

m = 1
(4p𝜀1/p−1)2

Here in the second line, we expanded the square and noticed that
a pair {j, j′} contributes zero in expectation if j≠ j′. The fourth line
follows from the precision sampling lemma and ‖𝒙‖2 ⩽ 1. With the
variance controlled, we apply Chebyshev to obtain

ℙ((((((((((((((|Σ|> 1
2p𝜀1/p−1))))))))))))))⩽ 1

4.

Now we assume |Σ|⩽ 1
2p𝜀1/p−1 ≪ 1 and get back to (1). Let us split

two cases:
(i) di

1/p |Σ| ⩽ 𝜀
2p |xi|, so the noise-signal ratio is low. We derive a î =

��1± 𝜀
2p� |xi|�

p
⩽(1±𝜀)ai.

(ii) di
1/p |Σ| > 𝜀

2p |xi|, so the noise-signal ratio is high. But since we
assumed that the noise amplitude |Σ| is tiny, the signal amplitude
|xi| must be tiny too. Hence the additive deviation |a î−ai| should
not be large.



To be precise, the assumptions imply |xi|<
2p |Σ|di

1/p

𝜀 ⩽(di/𝜀)1/p.
We bound

a î−ai ⩽ �|xi|+di
1/p |Σ|�p− |xi|p

⩽ (((((((((((((((((|xi|+
di

1/p

2p𝜀1/p−1)))))))))))))))))
p

− |xi|p

⩽ [[[[[[[[[[[[[[[[[((((((((((
di
𝜀 ))))))))))

1/p
+ di

1/p

2p𝜀1/p−1]]]]]]]]]]]]]]]]]
p

− di
𝜀

⩽ di
𝜀 [[[[[[[(((((((1+ 𝜀

2p)))))))
p
−1]]]]]]] ⩽ di.

Here the third line used that z↦ (z+ c)p− zp is monotonically
increasing on [−c,∞), where c⩾0.

For the inverse difference, we bound

ai−a î ⩽ |xi|p−�|xi|−di
1/p |Σ|�p

⩽ �|xi|+di
1/p |Σ|�p− |xi|p

⩽ di

where the second line used convexity of z↦(z+c)p, and the third
line follows from previous calculations. □

Of course, the success probability /3 4 is not enough for union bound
over all indices i∈[n]. But we can easily boost the probability to 1−
1/n2 by taking the median result of Θ(log n) independent threads.
This concludes the description and analysis for Alice.
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