
Public Key Encryption Schemes
Yanheng Wang

February 26, 2023

1 Assumptions

Definition. Let P ; Q be two probability distributions over
, all parameterised by �. Their
statistical distance is defined as

�(P ; Q) := sup
A�

(P (A)¡Q(A)):

We say P ; Q are statistically close if �(P ; Q) is a negligible function in �.

One can paraphrase �(P ; Q) in the lanaguage of games. Someone samples a� P with half
probability or a�Q with the other half probability. Upon seeing a, we want to tell if the person
went for the first option. Suppose our strategy is deterministic, and we answer �yes� when a2A,
and �no� when a2/ A. Then our answer is correct with probability

1
2
P (A)+ 1

2
Q(
nA)= 1

2
+ P (A)¡Q(A)

2
:

So our �advantage� over a blind guess is captured by the difference P (A)¡Q(A). Hence �(P ; Q)
can be interpreted as the maximum advantage of all possible strategies.

In general, the �smartest� strategy A will not admit a concise description than enumerating all
elements in A, which is of course not computationally realistic. If we restrict A to be efficiently
computable, then we arrive at another closeness notion:

Definition. Let P ; Q be two probability distributions over
, all parameterised by �. We say
they are computationally close, denoted P �Q, if for all A�
 computable in poly(�) time, the
advantage P (A)¡Q(A) is a negligible function in �.

Remark. One might wonder defining �computational distance� �(P ; Q) := supA (P (A) ¡ Q(A))
where the supremum is over all efficiently computable A. But this definition does not make sense
because � is held constant in the supremum and thus the word �efficient� is meaningless.

Proposition. Statistical closeness implies computational closeness.

Proposition. The relation � is transitive.

DDH Assumption. The following two distributions are computationally close:

¡ (ga; gr; gar) where a; r 2Zp are uniform;

¡ (ga; gr; �) where a; r 2Zp and � 2G are uniform.

BDDH Assumption. The following two distributions are computationally close:

¡ (ga; gr; ha; hb; hg; hiabr) where a; b; r2Zp are uniform;

1

¡ (ga; gr; ha; hb; �) where a; b; r 2Zp and � 2G are uniform.

LWE Assumption. If 0< /B q< 1 is sufficiently large, then the following two distributions are
computationally close:

¡ (A;A s+ e) where A2Zpm�n, s2Zpn, e2 [¡B;B]m are uniform;

¡ (A; u)2Zp
m�(n+1) uniform.

Leftover Hash Lemma. Suppose m>n log q+2� and define

P . (A;RA) where A2Zpm�n, R2f0; 1gt�m are uniform;

Q. (A;U) where A2Zpm�n, U 2Zpt�n are uniform.

Then �(P ; Q)6 t � 2¡�, so the two distributions are statistically close.

Smudging Lemma. Fix any x2 [¡B;B]n. Define

P . "2 [¡B̂ ; B̂]n uniform;

Q. x+ " for "2 [¡B̂ ; B̂]n uniform.

Then �(P ; Q)6 nB

2 B̂
. In particular, the two distributions are statistically close if we choose, say,

B̂>n 2� �B.

2 Constructions

2.1 Basic Schemes

Scheme ElGamal

secret key
public key

a
ga

a2Zp random

encryption c1 := gr

c2 := gar � �
r 2Zp random

decryption c2/c1a

Assume m>N +2� and B6 p

4m
.

Scheme Regev

secret key
public key

s
A, As+ e

A2Zpm�n, s2Zpn, e2 [¡B;B]m random

encryption c1 := rTA
c2 := rT(As+ e)+ �p

2

r 2f0; 1gm random

decryption 1
�
jc2¡ c1 sj> p

4

	
Further assume B̂ := 2� �B6 p

4m
.

2 Section 2

Scheme Regev-dual

secret key
public key

r
A, rTA

A2Zpm�n, r 2f0; 1gm random

encryption c1 :=As+ e
c2 := rTAs+ "+ �p

2

s2Zpn, e2 [¡B;B]m, "2 [¡B̂ ; B̂] random

decryption 1
�
jc2¡ rTc1j> p

4

	

2.2 Fully Homomorphic Encryptions (FHE)

Denote N := (n+1) log p and assume

� m>N +2�;

� B6 p

4m (N +3)d
where d is the largest tolerated circuit depth.

Scheme FHE

secret key
public key

s
A, As+ e

A2Zpm�n, s2Zpn, e2 [¡B;B]m random

encryption C :=R (A;As+ e)+ �G R2f0; 1gN�m random
G2Zp

N�(n+1) the gadget matrix

addition C +C 0

multiplication bin(C)C 0 bin(C)2f0; 1gN�N is the
binary decomposition of C

decryption 1
n������cT� s

¡1

�������> p

4

o
cT2Zp

1�(n+1) the last row of C

2.3 Identity-Based Encryptions (IBE)

Scheme IBE-Boneh-Franklin

secret key
public key

a
ga, h�; �i, H

a2Zp random
h�; �i :G�H!T pairing
H : f0; 1g�!H hash oracle

user key k :=H(i)a

encryption c1 := gr

c2 := hgar;H(i)i � �
r 2Zp random

decryption c2/hc1; ki

Scheme IBE-pairing

secret key
public key

a; b; u
h�; �i, hga; hbi, ga, gu

a; b; u2Zp random
h�; �i :G�H!T pairing

user key k0 :=hab+(u+ai)s

k1 :=hs
s2Zp random

encryption c0 := gr

c1 := g(u+ai)r

& := hga; hbir � �

r 2Zp random

decryption & � hc1; k1i/hc0; k0i

Constructions 3

Denote N :=n log p, D := 2�N , and assume

� m>N +2�;

� B6 p

4mD
.

Scheme IBE-Gentry-Peikert-Vaikuntanathan

secret key
public key

R
A :=

�
U

RU +G

�
, H

R2f0; 1gN�m, U 2Zpm�n

G2ZpN�n gadget matrix
H : f0; 1g�!Zp

n hash oracle

user key kT := (¡vTR; vT)+ �T � 2 [¡D;D]m random
vT := bin(H(i)T¡ �TA)

encryption c1 :=As+ e
c2 :=H(i)Ts+ � p

2

s2Zpn, e2 [¡B;B]m random

decryption 1
�
jc2¡ kTc1j> p

4

	
Note that the user key kT of identity i satisfies

kTA = ¡vTRU + vTRU + vTG+ �TA

= H(i)T¡ �TA+ �TA

= H(i)T:

2.4 Hierarchical IBE (HIBE)

Assume the identity i is represented as a bit string i1: : :i`.

Scheme HIBE-pairing

secret key
public key

ab; u1; : : : ; u`
h�; �i, hga; hbi, ga, gu1; : : : ; gu`, ha

a; b; u1; : : : ; u`2Zp random
h�; �i :G�H!T pairing

user key k0 :=h
ab+

P
j(uj+aij)sj

kj :=hsj for j 2 [`]
s1; : : : ; s`2Zp random

encryption c0 := gr

cj := g(uj+aij)r for j 2 [`]
& := hga; hbir � �

r 2Zp random

decryption & �
Q

j hcj ; kji/hc0; k0i

4 Section 2

2.5 Fuzzy IBE (FIBE)

Assume that any identity i is represented as a bit string i1: : :i`. Denote by dist(i; i0) the Hamming
distance between i and i0. The fuzzy IBE allows decryption whenever dist(i; i0)<d, where i is the
identity at the time of encryption and i0 is the identity of the user key.

Scheme FIBE (sketch)

function setup()
sample matrices Aj0; Aj1 and preimage trapdoors Rj0; Rj1 for each index j 2 [`]
sample u2Zpn
use fAjbg; u as public key
use fRjbg as secret key

function split(i)
generate fresh shares u u1; : : : ; u` with threshold `¡ d
find preimage kj : kjTAj

ij=uj by trapdoors, for all j 2 [`]
return fkjg; i as the user key for identity i

function encrypt(�; i)
sample s; fejg; "
let & :=uTs+ "+ � p

2

return fAj
ij s+ ejg; & ; i

function decrypt(c)
suppose fkjg; i0 is the user key
let J := fj 2 [`] : ij= ij

0g
compute reconstruction coefficients f�jg so that

P
j2J�juj=u

return 1 iff & ¡
P

j2J�j � kj (Aj
ij s+ cj)> p

4

3 Transformations

3.1 IBE + signature) CC security

Scheme Canetti-Halevi-Katz

function setup()
(sk;pk) := IBE.setup()
return (sk;pk)

function encrypt(� jpk)
(v; s) := SIG.setup() {verification & signing keys}
c := IBE.encrypt(�; v jpk) {use v as identity}
� := SIG.sign(c j s)
return (c; �; v)

function decrypt(c; �; v j sk)
if not SIG.verify(c; � j v) then

return ?
else

k := IBE.split(v j sk)
return IBE.decrypt(c j k)

Transformations 5

3.2 IBE + FHE) distributed IBE

Scheme Distributed-IBE

function setup()
(sk;pk) := IBE.setup()
(sk0;pk0) := FHE.setup()
sample s1; : : : ; sn subject to

P
j sj= sk0

e := FHE.enc(sk j sk0)
use (sj ; e) as secret key for party j 2 [n]
use (pk;pk0) as public key

function split(i j sj ; e)
define function f :x 7! IBE.split(i jx)
e~:= FHE.evaluate(f ; e jpk0) {e~ encrypts the user key of i}
kj := FHE.partial-decrypt(e~ j sj)
return kj

function encrypt(�; i jpk)
return IBE.encrypt(�; i jpk)

function decrypt(c j k1; : : : ; kn)
k := FHE.assemble(k1; : : : ; kn)
return IBE.decrypt(c j k)

4 Security Notions
CM security Fix an efficient attacker, and consider two interations

referee attacker
(sk;pk) := setup() ! see pk
get �? compute �?

c? := encrypt(�? jpk) ! see c?

referee attacker
(sk;pk) := setup() ! see pk
ignore; resample �? compute �?

c? := encrypt(�? jpk) ! see c?

Let P (resp. Q) be the joint distribution of (pk; �?; c?) in the first (resp. the second) interaction.
Both implicitly depend on the behaviour of the attacker. We say that the scheme resists this
attacker if P �Q. It is CM-secure if it resists all efficient attackers.

All other security definitions follow the same pattern: Describe two interactions in which an
attacker can participate, and require his views to be computionally close.
CC security

referee attacker
(sk;pk) := setup() ! see pk
return decrypt(c j sk) $ enquire any c
get �? / resample �? compute �?

c? := encrypt(�? jpk) ! see c?

return decrypt(c j sk) $ enquire any c=/ c?

Note that a homomorphic scheme cannot be CC-secure. We can design an attacker as follows.
Given ciphertext c? that contains message �?, he uses homomorphism to get a ciphertext c that
contains message �?+1, say. Then he ask the referee to decrypt c.

His two views are not computationally close, as the decryption contains essentially all inform-
ation to distinguish the two.
IBE-CM security

referee attacker
(sk;pk) := setup() ! see pk
return split(i j sk) $ enquire any identity i
get i? compute i? not yet enquired
get �? / resample �? compute �?

c? := encrypt(�?; i? jpk) ! see c?

return split(i j sk) $ enquire any identity i=/ i?

6 Section 4

	1 Assumptions
	2 Constructions
	2.1 Basic Schemes
	2.2 Fully Homomorphic Encryptions \(FHE\)
	2.3 Identity-Based Encryptions \(IBE\)
	2.4 Hierarchical IBE \(HIBE\)
	2.5 Fuzzy IBE \(FIBE\)

	3 Transformations
	3.1 IBE + signature ⇒ CC security
	3.2 IBE + FHE ⇒ distributed IBE

	4 Security Notions
	CM security
	CC security
	IBE-CM security

