Public Key Encryption Schemes

YANHENG WANG

February 26, 2023

1 Assumptions

Definition. Let P, Q be two probability distributions over Ω , all parameterised by λ . Their statistical distance is defined as

$$\Delta(P,Q) := \sup_{A \subseteq \Omega} (P(A) - Q(A)).$$

We say P, Q are statistically close if $\Delta(P, Q)$ is a negligible function in λ .

One can paraphrase $\Delta(P, Q)$ in the language of games. Someone samples $a \sim P$ with half probability or $a \sim Q$ with the other half probability. Upon seeing a, we want to tell if the person went for the first option. Suppose our strategy is deterministic, and we answer "yes" when $a \in A$, and "no" when $a \notin A$. Then our answer is correct with probability

$$\frac{1}{2}P(A) + \frac{1}{2}Q(\Omega \setminus A) = \frac{1}{2} + \frac{P(A) - Q(A)}{2}.$$

So our "advantage" over a blind guess is captured by the difference P(A) - Q(A). Hence $\Delta(P, Q)$ can be interpreted as the maximum advantage of all possible strategies.

In general, the "smartest" strategy A will not admit a concise description than enumerating all elements in A, which is of course not computationally realistic. If we restrict A to be efficiently computable, then we arrive at another closeness notion:

Definition. Let P, Q be two probability distributions over Ω , all parameterised by λ . We say they are *computationally close*, denoted $P \approx Q$, if for all $A \subseteq \Omega$ computable in $poly(\lambda)$ time, the advantage P(A) - Q(A) is a negligible function in λ .

Remark. One might wonder defining "computational distance" $\delta(P, Q) := \sup_A (P(A) - Q(A))$ where the supremum is over all efficiently computable A. But this definition does not make sense because λ is held constant in the supremum and thus the word "efficient" is meaningless.

Proposition. Statistical closeness implies computational closeness.

Proposition. The relation \approx is transitive.

DDH Assumption. The following two distributions are computationally close:

- (g^a, g^r, g^{ar}) where $a, r \in \mathbb{Z}_p$ are uniform;
- (g^a, g^r, θ) where $a, r \in \mathbb{Z}_p$ and $\theta \in \mathbb{G}$ are uniform.

BDDH Assumption. The following two distributions are computationally close:

 $- \quad (g^a,g^r,h^a,h^b,\langle g,h\rangle^{abr}) \text{ where } a,b,r\in\mathbb{Z}_p \text{ are uniform};$

- $(g^a, g^r, h^a, h^b, \theta)$ where $a, b, r \in \mathbb{Z}_p$ and $\theta \in \mathbb{G}$ are uniform.

LWE Assumption. If 0 < B/q < 1 is sufficiently large, then the following two distributions are computationally close:

- (A, As + e) where $A \in \mathbb{Z}_p^{m \times n}$, $s \in \mathbb{Z}_p^n$, $e \in [-B, B]^m$ are uniform;
- $\quad (A,u) \in \mathbb{Z}_p^{m \times (n+1)} \text{ uniform.}$

Leftover Hash Lemma. Suppose $m \ge n \log q + 2\lambda$ and define

- **P.** (A, RA) where $A \in \mathbb{Z}_p^{m \times n}$, $R \in \{0, 1\}^{t \times m}$ are uniform;
- $\boldsymbol{Q}{\boldsymbol{.}}~(A,U)$ where $A \in \mathbb{Z}_p^{m \times n}, \, U \in \mathbb{Z}_p^{t \times n}$ are uniform.

Then $\Delta(P,Q) \leq t \cdot 2^{-\lambda}$, so the two distributions are statistically close.

Smudging Lemma. Fix any $x \in [-B, B]^n$. Define

- **P.** $\varepsilon \in [-\hat{B}, \hat{B}]^n$ uniform;
- **Q.** $x + \varepsilon$ for $\varepsilon \in [-\hat{B}, \hat{B}]^n$ uniform.

Then $\Delta(P,Q) \leq \frac{nB}{2\dot{B}}$. In particular, the two distributions are statistically close if we choose, say, $\hat{B} \geq n 2^{\lambda} \cdot B$.

2 Constructions

2.1 Basic Schemes

Scheme ElG	lamal	
secret key	a	$a \in \mathbb{Z}_p$ random
public key	g^a	
encryption	$c_1 := g^r$	$r \in \mathbb{Z}_p$ random
	$c_2 := g^{ar} \cdot \mu$	
decryption	c_2 / c_1^a	

Assume $m \ge N + 2\lambda$ and $B \le \frac{p}{4m}$.

Scheme Reg	gev	
secret key	s	$A \in \mathbb{Z}_p^{m \times n}, s \in \mathbb{Z}_p^n, e \in [-B, B]^m$ random
public key	A, As + e	
encryption	$c_1 := r^{\mathrm{T}} A$	$r \in \{0, 1\}^m$ random
	$c_2 := r^{\mathrm{T}}(As+e) + \frac{\mup}{2}$	
decryption	$\mathbb{1}\left\{\left c_{2}-c_{1}s\right \geqslant\frac{p}{4}\right\}$	

Further assume $\hat{B} := 2^{\lambda} \cdot B \leq \frac{p}{4m}$.

Scheme Reg	gev-dual	
secret key public key	$r \\ A, r^{\mathrm{T}}A$	$A \in \mathbb{Z}_p^{m \times n}, r \in \{0,1\}^m$ random
encryption	$c_1 := A s + e$	$s \in \mathbb{Z}_p^n, e \in [-B,B]^m, \varepsilon \in [-\hat{B},\hat{B}]$ random
	$c_2 := r^{\mathrm{T}}As + \varepsilon + \frac{\mup}{2}$	
decryption	$\mathbb{1}\left\{\left c_{2}-r^{\mathrm{T}}c_{1}\right \geqslant\frac{p}{4}\right\}$	

2.2 Fully Homomorphic Encryptions (FHE)

Denote $N := (n+1) \log p$ and assume

- $m \ge N + 2\lambda;$
- $B \leqslant \frac{p}{4 m (N+3)^d}$ where d is the largest tolerated circuit depth.

Scheme FHE		
secret key	s	$A \in \mathbb{Z}_p^{m \times n}, s \in \mathbb{Z}_p^n, e \in [-B, B]^m$ random
public key	A, As + e	• -
encryption	$C := R\left(A, As + e\right) + \muG$	$R \in \{0, 1\}^{N \times m}$ random
		$G \in \mathbb{Z}_p^{N \times (n+1)}$ the gadget matrix
addition	C + C'	
multiplication	${\tt bin}(C)C'$	$\operatorname{\mathtt{bin}}(C) \in \{0,1\}^{N \times N}$ is the
		binary decomposition of C
decryption	$\mathbb{1}\left\{ \left c^{\mathrm{T}} \left(\begin{array}{c} s \\ -1 \end{array} \right) \right \geqslant \frac{p}{4} \right\}$	$c^{\mathrm{T}}\!\in\!\mathbb{Z}_p^{1\times(n+1)}$ the last row of C

2.3 Identity-Based Encryptions (IBE)

Scheme IBE	E-Boneh-Franklin	
secret key public key	$\stackrel{a}{g^a},\langle\cdot,\cdot angle,H$	$\begin{array}{l} a \in \mathbb{Z}_p \text{ random} \\ \langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{H} \to \mathbb{T} \text{ pairing} \\ H : \{0, 1\}^* \to \mathbb{H} \text{ hash oracle} \end{array}$
user key	$k := H(i)^a$	
encryption	$c_1 := g^r$ $c_2 := \langle g^{ar}, H(i) \rangle \cdot \mu$	$r \in \mathbb{Z}_p$ random
decryption	$c_2/\langle c_1,k\rangle$	

Scheme IBE	E-pairing	
secret key public key	$egin{aligned} &a,b,u\ &\langle\cdot,\cdot angle,\ &\langle g^a,h^b angle,\ g^a,\ g^u \end{aligned}$	$a, b, u \in \mathbb{Z}_p$ random $\langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{H} \to \mathbb{T}$ pairing
user key	$ \begin{aligned} & k_0 := h^{ab+(u+ai)s} \\ & k_1 := h^s \end{aligned} $	$s \in \mathbb{Z}_p$ random
encryption	$c_0 := g^r$ $c_1 := g^{(u+ai)r}$ $\varsigma := \langle g^a, h^b \rangle^r \cdot \mu$	$r \in \mathbb{Z}_p$ random
decryption	$\varsigma \cdot \langle c_1, k_1 \rangle / \langle c_0, k_0 \rangle$	

Denote $N := n \log p, D := 2^{\lambda} N$, and assume

- $m \ge N + 2\lambda;$
- $B \leqslant \frac{p}{4 m D}$.

Scheme IBE-Gentry-Peikert-Vaikuntanathan		
secret key public key	$R \\ A := \begin{pmatrix} U \\ RU + G \end{pmatrix}, H$	$R \in \{0,1\}^{N \times m}, U \in \mathbb{Z}_p^{m \times n}$ $G \in \mathbb{Z}_p^{N \times n} \text{ gadget matrix}$ $H : \{0,1\}^* \to \mathbb{Z}_p^n \text{ hash oracle}$
user key	$k^{\mathrm{T}}\!:=\!(-v^{\mathrm{T}}R,v^{\mathrm{T}})\!+\!\delta^{\mathrm{T}}$	$ \delta \in [-D, D]^m \text{ random} \\ v^{\mathrm{T}} := \operatorname{bin}(H(i)^{\mathrm{T}} - \delta^{\mathrm{T}} A) $
encryption	$c_1 := A s + e$ $c_2 := H(i)^{\mathrm{T}} s + \frac{\mu p}{2}$	$s \in \mathbb{Z}_p^n, e \in [-B,B]^m$ random
decryption	$\mathbb{1}\left\{\left c_{2}-k^{\mathrm{T}}c_{1}\right \geqslant\frac{p}{4}\right\}$	

Note that the user key k^{T} of identity *i* satisfies

$$\begin{aligned} k^{\mathrm{T}}A &= -v^{\mathrm{T}}RU + v^{\mathrm{T}}RU + v^{\mathrm{T}}G + \delta^{\mathrm{T}}A \\ &= H(i)^{\mathrm{T}} - \delta^{\mathrm{T}}A + \delta^{\mathrm{T}}A \\ &= H(i)^{\mathrm{T}}. \end{aligned}$$

2.4 Hierarchical IBE (HIBE)

Assume the identity i is represented as a bit string $i_1 \dots i_\ell.$

Scheme HII	3E-pairing	
secret key public key	$egin{aligned} & ab, u_1, \dots, u_\ell \ & \langle \cdot, \cdot angle, \ & \langle g^a, h^b angle, \ & g^a, \ g^{u_1}, \dots, g^{u_\ell}, \ h^a \end{aligned}$	$a, b, u_1, \dots, u_\ell \in \mathbb{Z}_p$ random $\langle \cdot, \cdot \rangle : \mathbb{G} \times \mathbb{H} \to \mathbb{T}$ pairing
user key	$k_0 := h^{ab + \sum_j (u_j + ai_j)s_j}$ $k_j := h^{s_j} \text{ for } j \in [\ell]$	$s_1, \ldots, s_\ell \in \mathbb{Z}_p$ random
encryption	$c_0 := g^r$ $c_j := g^{(u_j + ai_j)r} \text{ for } j \in [\ell]$ $\varsigma := \langle g^a, h^b \rangle^r \cdot \mu$	$r \in \mathbb{Z}_p$ random
decryption	$arsigma \cdot \prod_{j} \left< c_{j}, k_{j} \right> / \left< c_{0}, k_{0} \right>$	

2.5 Fuzzy IBE (FIBE)

Assume that any identity i is represented as a bit string $i_1 \dots i_\ell$. Denote by dist(i, i') the Hamming distance between i and i'. The fuzzy IBE allows decryption whenever dist(i, i') < d, where i is the identity at the time of encryption and i' is the identity of the user key.

Scheme FIBE (sketch) function setup() sample matrices A_j^0, A_j^1 and preimage trapdoors R_j^0, R_j^1 for each index $j \in [\ell]$ sample $u \in \mathbb{Z}_p^n$ use $\{A_j^b\}, u$ as public key use $\{R_i^b\}$ as secret key function split(i) generate fresh shares $u \rightsquigarrow u_1, \ldots, u_\ell$ with threshold $\ell - d$ find preimage $k_j : k_j^{\mathrm{T}} A_j^{i_j} = u_j$ by trapdoors, for all $j \in [\ell]$ return $\{k_i\}, i$ as the user key for identity i function $encrypt(\mu, i)$ sample $s, \{e_j\}, \varepsilon$ let $\varsigma := u^T s + \varepsilon + \frac{\mu p}{2}$ return $\{A_j^{i_j} s + e_j\}, \varsigma, i$ function decrypt(c)suppose $\{k_j\}, i'$ is the user key let $J := \{ j \in [\ell] : i_j = i'_j \}$ compute reconstruction coefficients $\{\alpha_j\}$ so that $\sum_{j \in J} \alpha_j u_j = u$ return 1 iff $\varsigma - \sum_{j \in J} \alpha_j \cdot k_j \left(A_j^{i_j} s + c_j \right) \geqslant \frac{p}{4}$

3 Transformations

3.1 IBE + signature \Rightarrow CC security

```
Scheme Canetti-Halevi-Katz
function setup()
    (sk, pk) := IBE.setup()
   return (sk, pk)
function encrypt(\mu | pk)
    (v,s) := \operatorname{SIG.setup}()
                                 {verification & signing keys}
   c := IBE.encrypt(\mu, v | pk)  {use v as identity}
   \sigma := \texttt{SIG.sign}(c \,|\, s)
   return (c, \sigma, v)
function decrypt(c, \sigma, v | sk)
   if not SIG.verify(c, \sigma \mid v) then
       return \perp
   else
       k := IBE.split(v | sk)
       return IBE.decrypt(c \mid k)
```

3.2 IBE + FHE \Rightarrow distributed IBE

Denemie Distributed-IDD	Scheme	Distributed-IBE
-------------------------	--------	-----------------

function setup()
$\begin{array}{l} (\operatorname{sk},\operatorname{pk}) := \operatorname{IBE.setup}() \\ (\operatorname{sk}',\operatorname{pk}') := \operatorname{FHE.setup}() \\ \operatorname{sample} s_1, \dots, s_n \text{ subject to } \sum_j s_j = \operatorname{sk}' \\ e := \operatorname{FHE.enc}(\operatorname{sk} \operatorname{sk}') \\ \operatorname{use} (s_j, e) \text{ as secret key for party } j \in [n] \\ \operatorname{use} (\operatorname{pk}, \operatorname{pk}') \text{ as public key} \end{array}$
function split $(i s_j, e)$ define function $f: x \mapsto IBE.split(i x)$ $\tilde{e} := FHE.evaluate(f, e pk')$ { \tilde{e} encrypts the user key of i} $k_j := FHE.partial-decrypt(\tilde{e} s_j)$ return k_j
function $encrypt(\mu, i pk)$ return IBE.encrypt($\mu, i pk$)
function decrypt $(c k_1,, k_n)$ $k := FHE.assemble(k_1,, k_n)$ return IBE.decrypt $(c k)$

4 Security Notions

CM security Fix an efficient attacker, and consider two interations

referee	attacker	referee	attacker
(sk, pk) := setup()	\rightarrow see pk	(sk, pk) := setup()	\rightarrow see pk
get μ^{\star}	\leftarrow compute μ^*	ignore; resample μ^{\star}	\leftarrow compute μ^*
$c^\star\!:=\!\texttt{encrypt}(\mu^\star \mathrm{pk})$	\rightarrow see c^{\star}	$c^\star\!:=\!\texttt{encrypt}(\mu^\star \mathrm{pk})$	\rightarrow see c^{\star}

Let P (resp. Q) be the joint distribution of (pk, μ^*, c^*) in the first (resp. the second) interaction. Both implicitly depend on the behaviour of the attacker. We say that the scheme resists this attacker if $P \approx Q$. It is *CM*-secure if it resists all efficient attackers.

All other security definitions follow the same pattern: Describe two interactions in which an attacker can participate, and require his views to be computionally close.

CC security

referee		attacker
(sk, pk) := setup()	\rightarrow	see pk
return $\texttt{decrypt}(c \texttt{sk})$	\leftrightarrow	enquire any c
get μ^{\star} / resample μ^{\star}	\leftarrow	compute μ^*
$c^\star\!:=\!\texttt{encrypt}(\mu^\star \mathrm{pk})$	\rightarrow	see c^{\star}
return $\texttt{decrypt}(c \texttt{sk})$	\leftrightarrow	enquire any $c \neq c^*$

Note that a homomorphic scheme cannot be CC-secure. We can design an attacker as follows. Given ciphertext c^* that contains message μ^* , he uses homomorphism to get a ciphertext c that contains message $\mu^* + 1$, say. Then he ask the referee to decrypt c.

His two views are not computationally close, as the decryption contains essentially all information to distinguish the two.

IBE-CM security

referee		attacker
(sk, pk) := setup()	\rightarrow	see pk
return $\texttt{split}(i \texttt{sk})$	\leftrightarrow	enquire any identity i
get i^{\star}	\leftarrow	compute i^* not yet enquired
get μ^{\star} / resample μ^{\star}	\leftarrow	compute μ^*
$c^\star := \texttt{encrypt}(\mu^\star, i^\star \mathrm{pk})$	\rightarrow	see c^{\star}
return $\texttt{split}(i \text{sk})$	\leftrightarrow	enquire any identity $i \neq i^{\star}$