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1 Assumptions

Definition. Let P, Q be two probability distributions over 2, all parameterised by A. Their
statistical distance is defined as

A(P,Q) = sup (P(A) — Q(A4)).

We say P, Q are statistically close if A(P, Q) is a negligible function in A.

One can paraphrase A(P, @) in the lanaguage of games. Someone samples a ~ P with half
probability or a ~ @ with the other half probability. Upon seeing a, we want to tell if the person
went for the first option. Suppose our strategy is deterministic, and we answer “yes” when a € A,
and “no” when a ¢ A. Then our answer is correct with probability

1 1 1, P(4) - QA
3 PA)+5 Q@A) =5+ == =8

So our “advantage” over a blind guess is captured by the difference P(A) — Q(A). Hence A(P, Q)
can be interpreted as the maximum advantage of all possible strategies.

In general, the “smartest” strategy A will not admit a concise description than enumerating all
elements in A, which is of course not computationally realistic. If we restrict A to be efficiently
computable, then we arrive at another closeness notion:

Definition. Let P, Q be two probability distributions over €2, all parameterised by A. We say
they are computationally close, denoted P = @, if for all A C computable in poly(A) time, the
advantage P(A) — Q(A) is a negligible function in A.

Remark. One might wonder defining “computational distance” 6(P, Q) :=supa (P(A4) — Q(4))
where the supremum is over all efficiently computable A. But this definition does not make sense
because A is held constant in the supremum and thus the word “efficient” is meaningless.

Proposition. Statistical closeness implies computational closeness.
Proposition. The relation = is transitive.

DDH Assumption. The following two distributions are computationally close:
— (g% g",¢°") where a,r € Z, are uniform;

— (g% g",0) where a,r € Z, and 6 € G are uniform.

BDDH Assumption. The following two distributions are computationally close:

— (g% g",h% h* {g,h)2") where a,b,r € Z, are uniform;
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— (g% g",h% h* 0) where a,b,r € Z, and 6 € G are uniform.

LWE Assumption. If 0 <5/, <1 is sufficiently large, then the following two distributions are
computationally close:

— (A, As+e) where A€ Z, ™", s€Zy, e€[—B, B]™ are uniform;
— (4,u)e Z?X(n+1) uniform.
Leftover Hash Lemma. Suppose m >nlog ¢+ 2\ and define
P. (A,RA) where AcZ,"*", Re {0,1}"*™ are uniform;
Q. (A,U) where A€ Z*", U € ZL*™ are uniform.

Then A(P,Q)<t-27*, so the two distributions are statistically close.

Smudging Lemma. Fix any x € [-B, B]™. Define
P. ¢ €[-B, B]" uniform;
Q. z+¢ for e € [~ B, B]™ uniform.

Then A(P, Q) < %. In particular, the two distributions are statistically close if we choose, say,
B>n2* B.

2 Constructions

2.1 Basic Schemes

Scheme ElGamal

secret key @ a € Z, random
public key  g*

T

encryption c¢i1:=g r € Zy, random

ar

Coi=g"" pu
decryption ¢/ cf
Assume m > N +2 )\ and Bgﬁ.
Scheme Regev

secret key s AeZy ™", sely, ec|[—B,B]"™ random

public key A, As+e

encryption c¢i:=rTA r€{0,1}™ random

ca:i=rT(As+e) +%
. P
decryption ]l{|02 —c18|2 Z}

Further assume B :=2*. B < -2

S4am”
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Scheme Regev-dual

secret key 1 Aezy; ™", re{0,1}™ random
public key A, rTA
encryption c¢1:=As+e s€ly,ec[-B,B]™ ¢ [-B, B] random

CQI:TTAS—FE—F%
P
1

decryption 1 { lea —rTer] > }

2.2 Fully Homomorphic Encryptions (FHE)
Denote N :=(n+1)log p and assume

e m=N+2)\
where d is the largest tolerated circuit depth.

p
* B

Scheme FHE
secret key s AeZy ™", sely, ec|-B,B]™ random
public key A As+e
encryption C:=R(A,As+e)+puG Re{0,1}¥*™ random
Ge ng ("+1) the gadget matrix
addition c+cC’
multiplication  bin(C) C’ bin(C) € {0, 1}V >N is the
binary decomposition of C'
decryption ]l{‘cT< S )‘ 2%} cte Z;X(nﬂ) the last row of C

2.3 Identity-Based Encryptions (IBE)

Scheme IBE-Boneh-Franklin

secret key  a a € 7, random
public key g% (-,-), H (-,-y: G x H— T pairing
H :{0,1}* — H hash oracle

user key k:=H(:)*

encryption c¢j:=g" r € Zp random
cp:=(g"", H(i)) - p

decryption  ¢a/{c1, k)

Scheme IBE-pairing
secret key  a,b,u a,b,u € Z, random
public key (-}, (g% h®), g% g* (-,-):G x H— T pairing
user key ko := hobt(utai)s s € Zp random
ki:=h*
encryption c¢o:=g" r € Zyp random
1= g(“+“i)"
ci= (g% h")" p
decryption - {e1, k1) /{co, ko)




Denote N :=nlogp, D:=2* N, and assume

e m=N+2)\

° B<4n€D'

Scheme IBE-Gentry-Peikert-Vaikuntanathan

secret key R Re{0,1}N*m U ez
public key  A:= < RUU+G ), H Ge ZéVX" gadget matrix
H :{0,1}* — Zj, hash oracle
user key kT:=(—vTR,v")+ 6T  §€[-D, D)™ random
vT:=bin(H(i)T - 6TA)
encryption ci:=As+e s €2y, e € [—B, B random
co:=H(i)'s +5°
decryption ]1{ leg — kTey| > %}

Note that the user key k™ of identity ¢ satisfies

ETA = —vTRU +vTRU +vTG+46TA
= H>i)T—§TA+TA
= H@)™

2.4 Hierarchical IBE (HIBE)

Assume the identity i is represented as a bit string 4;. . .7,.

SECTION 2

Scheme HIBE-pairing

secret key  ab,u, ..., up a,b,uy,...,u €Zy, random
public key  (-,-), (g% h®), g% g“1,...,9% h* (-,-):G x H—T pairing
user key ko:= pabTE, (it aip)s; S1,...,8¢ € Z, random
kj:=h% for j € [{]
encryption co:=g" r € Zp random
cj= gt for je /]
ci=(g%h")"

decryption - HJ— (¢j, kj) [ {co, ko)
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2.5 Fuzzy IBE (FIBE)

Assume that any identity ¢ is represented as a bit string ¢;...7,. Denote by dist(é,4’) the Hamming
distance between ¢ and i’. The fuzzy IBE allows decryption whenever dist(i,i’) < d, where i is the
identity at the time of encryption and ¢’ is the identity of the user key.

Scheme FIBE (sketch)

function setup()
sample matrices A?-, A} and preimage trapdoors R?, RJI- for each index j € [{]
sample u € Zy,
use {A%}, u as public key
use {R5} as secret key
function split(i)
generate fresh shares u~- w1, ..., uy with threshold ¢ —d
find preimage k;: kJTA? =u; by trapdoors, for all j € [/]
return {k;}, i as the user key for identity 4

function encrypt(pu,1)
sample s, {e;}, e
let g::uTs+€+%
return {AY s +e;},¢,1

function decrypt(c)
suppose {k;},i is the user key
let J:={je[l]:i;=1}}
compute reconstruction coefficients {«;} so that
return 1 iff ¢ — 3 - kj (A;-js—i—cj)Z%

jeJajuj:u

jeg &

3 Transformations

3.1 IBE + signature = CC security

Scheme Canetti-Halevi-Katz

function setup()
(sk, pk) := IBE.setup()
return (sk, pk)

function encrypt(u | pk)
(v,s):=8IG.setup() {verification & signing keys}
¢:=IBE.encrypt(u,v|pk) {use v as identity}
0 :=SIG.sign(c|s)
return (c,o,v)

function decrypt(c,o,v|sk)
if not SIG.verify(c,o|v) then
return L
else
k:=1IBE.split(v]sk)
return IBE.decrypt(c|k)




3.2 IBE + FHE = distributed IBE

SECTION 4

Scheme Distributed-IBE

function setup()
(sk, pk) := IBE.setup()
(sk’, pk’) :=FHE. setup()

e:=FHE.enc(sk|sk’)

use (pk, pk’) as public key

function split(i|s;,e)

¢:=FHE.evaluate(f,e|pk’)
k;:=FHE.partial-decrypt(é
return k;

function encrypt(u,i|pk)
return IBE.encrypt(u,i|pk)

function decrypt(c|ki,..., kn)
k:=FHE.assemble(ky,..., k)
return IBE.decrypt(c|k)

sample s1,..., s, subject to Zj s; =sk’

use (s;,e) as secret key for party j € [n]

define function f:z+ IBE.split(i|z)

{€ encrypts the user key of i}

| 55)

4 Security Notions

CM security Fix an efficient attacker, and consider two interations

referee attacker
(sk, pk) :=setup() — see pk

get u* +— compute p*
c*:=encrypt(u*|pk) — seec*

referee attacker
(sk, pk) := setup() — see pk
ignore; resample u* < compute p*
c¢*:=encrypt(p*|pk) — seec*

Let P (resp. Q) be the joint distribution of (pk, *,¢*) in the first (resp. the second) interaction.
Both implicitly depend on the behaviour of the attacker. We say that the scheme resists this

attacker if P~ Q. It is CM-secure if it resists all

efficient attackers.

All other security definitions follow the same pattern: Describe two interactions in which an
attacker can participate, and require his views to be computionally close.

CC security
referee

attacker

(sk, pk) :=setup()

return decrypt(c|sk)
get u* / resample p*
c¢*:=encrypt(u*|pk)
return decrypt(c|sk)

see pk

enquire any c
compute p*

see c*

enquire any ¢+ c*

—
>
«—
—

>

Note that a homomorphic scheme cannot be CC-secure. We can design an attacker as follows.
Given ciphertext ¢* that contains message p*, he uses homomorphism to get a ciphertext ¢ that
contains message p*+ 1, say. Then he ask the referee to decrypt c.

His two views are not computationally close, as the decryption contains essentially all inform-

ation to distinguish the two.
IBE-CM security

referee

attacker

(sk, pk) := setup()
return split(i|sk)

get *

get p* / resample p*
¢*:=encrypt(p*,*| pk)
return split(i|sk)

A

see pk

enquire any identity ¢
compute ¢* not yet enquired
compute p*

see c*

enquire any identity ¢ #4*
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