Finding Minimum in Monotone MAtrices

Yanheng Wang

Consider the task of finding the minimum in a matrix $A \in \mathbb{R}^{m \times n}$. In practice A often possesses certain structure for exploitation; this note concerns with what people call monotonicity.

For each row $i \in[m]$, let $j(i)$ be the column that contains the leftmost smallest element in that row.

Definition 1. Matrix $A \in \mathbb{R}^{m \times n}$ is monotone if $j(1) \leqslant j(2) \leqslant \cdots \leqslant j(m)$.
If A is monotone then every submatrix formed by deleting some rows is also monotone. So we can compute the $j(i)$'s by divide-andconquer on rows:
fn find-smallest (A)

```
{assume monotone }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ ; shall find }j(i)\mathrm{ for every i}i\in[m]
if }m\leqslant2\mathrm{ then
    for i\in[m], find j(i) in brute-force
else
    let }\mp@subsup{A}{}{\prime}\mathrm{ be the submatrix formed by even rows
    find-smallest( }\mp@subsup{A}{}{\prime})\quad{\mathrm{ so we get }j(2),j(4),\ldots
    for }k=1,2,\ldots,m/2 d
    find j(2k-1) by scanning entries {2k-1}\times[j(2k-2),j(2k)]
```

By monotonicity the for-loop costs $O(m+n)$ time only. Hence we have recursion

$$
T(m, n)=T(m / 2, n)+O(m+n) .
$$

Expanding it, we see

$$
T(m, n)=\sum_{t=0}^{\log m} O\left(\frac{m}{2^{t}}+n\right)=O(m+n \log m) .
$$

The running time is especially good when $m \geqslant n$, that is when the matrix is "slim".

What about "fat" matrices for which $m<n$? (Think of $m=3$ and $n=100$ for example.) Well, in the end at most m columns can show up as $j(i)$'s. So our goal is to discard irrelevant columns quickly, thus making the matrix slim.

Here is a simple heuristic. Pick a row $i \in[m]$ and two columns $1 \leqslant j<j^{\prime} \leqslant n$.

- If $a_{i j} \leqslant a_{i j^{\prime}}$ then we know $j(1) \leqslant \cdots \leqslant j(i) \leqslant j$ by total monotonicity. So we may discard the box $[1, i] \times[j+1, n]$, meaning that these entries may never be minima of their respective rows.

- If $a_{i j}>a_{i j^{\prime}}$ then we know $j(m) \geqslant \cdots \geqslant j(i) \geqslant j^{\prime}$. So we may discard the box $[i, m] \times\left[1, j^{\prime}-1\right]$.

By repeated applications of the heuristic, one can discard all irrelevant entries. But more strategy is needed as we care about efficiency.

For each column $j \in[n]$, we maintain an integer $d(j) \in[0, m]$ such that the topmost $d(j)$ entries in the column were already discarded. Initially $d(j)=0$ and all columns are active.

In each iteration, we pick the leftmost active column j that maximises $d(j)$. Select row $i:=d(j)+1$ and the nearest active column $j^{\prime}>j$. (If j^{\prime} does not exist then we terminate.) Compare the entries $a_{i j}$ and $a_{i j^{\prime}}$ as above. In the first case we set $d\left(j^{\prime}\right):=i>d(j)$. In the second case we set $\alpha(j)=m$ and declare column j dead.

Note that we always make progress: either the largest $d(j)$ among active columns increases, or an active column becomes dead. So the number of iterations is at most $m+n$.

It is easy to argue inductively that
After iteration t, we have only looked at columns [t]. Among the active columns $j \in[t]$, the value $d(j)$ strictly increases with j.

When the process terminates, all columns to the right of j are dead, so $t \geqslant n$. Hence $d(j)$ strictly increases across all active columns. Consequently, there can be at most m active columns. The dead columns can be safely discarded.

The process can be implemented with a stack:
fn reduce (A)

```
{assume monotone }A\in\mp@subsup{\mathbb{R}}{}{m\timesn}\mathrm{ ; shall discard all but m columns}
initialise d}d(j):=0\mathrm{ for all }j\in[n
let S be an empty stack
S.push(1) {initially j=1}
j ^ { \prime } : = 2 ~ \{ a c t i v e ~ c o l u m n ~ r i g h t ~ n e x t ~ t o ~ j \}
repeat
```

 \(j:=\) S.top ()
 \(i:=d(j)+1\)
 if \(a_{i j} \leqslant a_{i j^{\prime}}\) then
 \(d\left(j^{\prime}\right):=i\)
 S.push \(\left(j^{\prime}\right)\)
 \(j^{\prime}:=j^{\prime}+1\)
 else
 \(d(j):=m\); declare \(j\) dead
 S.pop()
 until $j^{\prime}>n$
return the active columns of A

Now that the fat A is trimmed to a slim A^{\prime}, we want to apply findsmallest $\left(A^{\prime}\right)$. However, the submatrix might or might not be monotone. This is why we strengthen Definition 1 as follows:

Definition 2. A matrix is totally monotone if every submatrix is monotone (in the sense of Definition 1).

Exercise. Show that every vector is totally monotone.
Definition 2 allows us to recurse on the submatrix, applying reduction whenever necessary. The final algorithm, named after its inventors Shor, Moran, Aggarwal, Wilber and Klawe, is summarised below:

Algorithm SMAWK (A)

$\left\{\right.$ assume totally monotone $A \in \mathbb{R}^{m \times n}$; shall find $j(i)$ for every $\left.i \in[m]\right\}$

if $m \leqslant 2$ then

for $i \in[m]$, find $j(i)$ in brute-force
else
if $m<n$ then
$A:=\operatorname{reduce}(A)$
let A^{\prime} be the submatrix formed by even rows
find-smallest $\left(A^{\prime}\right) \quad\{$ so we get $j(2), j(4), \ldots\}$
for $k=1,2, \ldots, m / 2$ do
find $j(2 k-1)$ by scanning entries $\{2 k-1\} \times[j(2 k-2), j(2 k)]$

So the time recursion writes

$$
T(m, n)=T(m / 2, \min \{m, n\})+O(m+n) .
$$

Suppose we start with a slim matrix. Within $\log (m / n) \leqslant m / n$ recursive calls the matrix becomes fat. Each call spends time $O(n)$ in the forloop, so they cost time $O(m)$ altogether.

As soon as we have reached a fat matrix, the reduction comes into play. It ensures that n shrinks almost synchronously with m, so the recursion is essentially $T(m+n)=T((m+n) / 2)+O(m+n)$, which has solution $T(m+n)=O(m+n)$. Putting the two phases together, the total running time is thus $T(m, n)=O(m+n)$.

Finally we take a closer look at Definition 2. Though restrictive, it still covers a wide range of matrices, for example Monge matrices.

Definition 3. A matrix $A=\left(a_{i j}\right)$ is Monge if $a_{i j}+a_{i+1, j+1} \leqslant a_{i, j+1}+a_{i+1, j}$ for all i, j.

Example. Let $f:[m] \rightarrow \mathbb{R}$ and $g:[n] \rightarrow \mathbb{R}$ be two functions. The matrix defined by $a_{i j}:=f(i)+g(j)$ is Monge.

Example. Take m and n points on two parallel lines, respectively. Define $a_{i j}$ as the distance from the i-th point on the first line to the j-th point on the second line. The Monge property follows from triangle inequality.

Exercise. Show that a matrix $A=\left(a_{i j}\right)$ is Monge iff $a_{i j}+a_{i^{\prime} j^{\prime}} \leqslant a_{i j^{\prime}}+a_{i^{\prime} j}$ for all $i<i^{\prime}$ and $j<j^{\prime}$.

Lemma 4. Every Monge matrix is totally monotone.
Proof. Suppose A is not totally monotone. Then there exists rows $i<i^{\prime}$ such that $j:=j\left(i^{\prime}\right)<j(i)=: j^{\prime}$. In particular, $a_{i j}>a_{i j^{\prime}}$ and $a_{i^{\prime} j} \leqslant a_{i^{\prime} j^{\prime}}$, thus $a_{i j}+a_{i^{\prime} j^{\prime}}>a_{i j^{\prime}}+a_{i^{\prime} j}$, contradicting the definition of Monge matrices.

