FINDING MINIMUM IN MONOTONE
MATRICES

Yanheng Wang

Consider the task of finding the minimum in a matrix A€ R"™*". In
practice A often possesses certain structure for exploitation; this note
concerns with what people call monotonicity.

For each row i€ [m], let j(i) be the column that contains the left-
most smallest element in that row.

Definition 1. Matrix A € R"*" is monotone if j(1) <j(2) <--- <j(m).

If A is monotone then every submatrix formed by deleting some
rows is also monotone. So we can compute the j(i)'s by divide-and-
conquer on rows:

fn find-smallest(A)

{assume monotone A € R™*"; shall find j(i) for every i€ [m]}

if m<2 then
for i€ [m], find j(i) in brute-force

else
let A’ be the submatrix formed by even rows
find-smallest(A") {so we get j(2),j(4),...}
fork=1,2,...,m/2 do

find j(2k—1) by scanning entries {2k —1} x [j(2k—2),j(2k)]

By monotonicity the for-loop costs O(m +n) time only. Hence we
have recursion
Tm,n)=Tm/2,n)+O(m+n).
Expanding it, we see

logm

T(m,n) = Z O(%+n> =0O(m+nlogm).
t=0

The running time is especially good when m >n, that is when the
matrix is “slim”.

What about “fat” matrices for which m <n? (Think of m =3 and
n =100 for example.) Well, in the end at most m columns can show
up as j(i)'s. So our goal is to discard irrelevant columns quickly, thus
making the matrix slim.
Here is a simple heuristic. Pick a row i€ [m] and two columns
1<j<j' <n.
o [Ifa;<a;y then we know j(1) <--- <j(i) <j by total monotonicity.
So we may discard the box [1,i] x [j+ 1,n], meaning that these
entries may never be minima of their respective rows.

Eli]‘ LZZ']"

e [If a;;>a; then we know j(m) > --- > (i) >j'. So we may discard
the box [i,m] x[1,j" —1].

ﬂi]' llz']"

By repeated applications of the heuristic, one can discard all irrelevant
entries. But more strategy is needed as we care about efficiency.

For each column j €[], we maintain an integer d(j) € [0,m] such
that the topmost d(j) entries in the column were already discarded.
Initially d(j) =0 and all columns are active.

In each iteration, we pick the leftmost active column j that maxim-
ises d(j). Select row i:=d(j) +1 and the nearest active column j' > j. (If
j" does not exist then we terminate.) Compare the entries a;; and a;; as
above. In the first case we set d(j’) :=i>d(j). In the second case we set
«(j) =m and declare column j dead.

Note that we always make progress: either the largest d(j) among
active columns increases, or an active column becomes dead. So the
number of iterations is at most m + n.

It is easy to argue inductively that

After iteration t, we have only looked at columns [].
Among the active columns j € [t], the value d(j) strictly
increases with j.

When the process terminates, all columns to the right of j are dead,
so t >n. Hence d(j) strictly increases across all active columns. Con-
sequently, there can be at most m active columns. The dead columns
can be safely discarded.

The process can be implemented with a stack:

fn reduce(A)

{assume monotone A € R"™"; shall discard all but m columns}
initialise d(j) :=0 for all j € [n]

let S be an empty stack

S.push(1l) ({initially j=1}

j':=2 {active column right next to j}

repeat
j=S.top()
i=d(j) +1
if a;;<a;p then
d(j'y:=i
S.push(j")
jl=i+1
else
d(j):=m; declare j dead
S.pop()
until j' >n

return the active columns of A

Now that the fat A is trimmed to a slim A’, we want to apply find-
smallest(A"). However, the submatrix might or might not be mono-
tone. This is why we strengthen Definition 1 as follows:

Definition 2. A matrix is totally monotone if every submatrix is mono-
tone (in the sense of Definition 1).

Exercise. Show that every vector is totally monotone.

Definition 2 allows us to recurse on the submatrix, applying
reduction whenever necessary. The final algorithm, named after its
inventors Shor, Moran, Aggarwal, Wilber and Klawe, is summarised
below:

Algorithm SMAWK(A)

{assume totally monotone A € R™*"; shall find j(i) for everyi& [m]}
if m<2 then
for i€ [m], find j(i) in brute-force
else
if m <n then
A:=reduce(A)
let A’ be the submatrix formed by even rows
find-smallest(A") {so we get j(2),j(4),...}
fork=1,2,...,m/2do
find j(2k—1) by scanning entries {2k —1} x[j(2k—2),j(2k)]

So the time recursion writes
T(m,n)=T(m/2, min{m,n}) + O(m+n).

Suppose we start with a slim matrix. Within log(m/n) <m/n recursive
calls the matrix becomes fat. Each call spends time O(n) in the for-
loop, so they cost time O(m) altogether.

As soon as we have reached a fat matrix, the reduction comes into
play. It ensures that n shrinks almost synchronously with m, so the
recursion is essentially T(m +n) =T ((m+n)/2) + O(m+n), which has
solution T(m +n) = O(m + n). Putting the two phases together, the
total running time is thus T'(m,n) = O(m+n).

Finally we take a closer look at Definition 2. Though restrictive, it
still covers a wide range of matrices, for example Monge matrices.

Definition 3. A matrix A = (a;;) is Monge if a;;+a;11,j11<a; j41+ i1,/
foralli,j.

Example. Let f:[m] - R and g:[n] — R be two functions. The matrix
defined by a;;:= f (i) + ¢(j) is Monge.

Example. Take m and n points on two parallel lines, respectively. Define
ajj as the distance from the i-th point on the first line to the j-th point on
the second line. The Monge property follows from triangle inequality.

Exercise. Show that a matrix A = (a;) is Monge iff a;; +a; j <a;y +a;
foralli<i’and j<j'.

Lemma 4. Every Monge matrix is totally monotone.

Proof. Suppose A is not totally monotone. Then there exists rows i <i’
such that j:=j(i") <j(i) =:j'. In particular, ajj>a; and a;yj<ayp i, thus
ajj+ay j>a;+apj, contradicting the definition of Monge matrices. O

