
FINDING MINIMUM IN MONOTONE
MATRICES

Yanheng Wang

Consider the task of finding the minimum in amatrixA∈ℝm×n. In
practice A often possesses certain structure for exploitation; this note
concerns with what people call monotonicity.

For each row i∈ [m], let j(i) be the column that contains the left-
most smallest element in that row.

Definition 1. Matrix A∈ℝm×n is monotone if j(1)⩽ j(2)⩽ ⋅ ⋅ ⋅ ⩽ j(m).

If A is monotone then every submatrix formed by deleting some
rows is also monotone. So we can compute the j(i)'s by divide-and-
conquer on rows:

fn find-smallest(A)
{assume monotone A∈ℝm×n; shall find j(i) for every i∈[m]}
if m⩽2 then

for i∈[m], find j(i) in brute-force
else

let A′ be the submatrix formed by even rows
find-smallest(A′) {so we get j(2), j(4), . . . }
for k=1,2, . . . ,m/2 do

find j(2k−1) by scanning entries {2k−1}×[j(2k−2), j(2k)]

By monotonicity the for-loop costs O(m+n) time only. Hence we
have recursion

T(m,n)=T(m/2,n)+O(m+n).

Expanding it, we see

T(m,n)= �
t=0

logm

O�m2t +n�=O(m+n logm).

The running time is especially good when m⩾ n, that is when the
matrix is “slim”.



What about “fat” matrices for which m<n? (Think of m= 3 and
n= 100 for example.) Well, in the end at most m columns can show
up as j(i)'s. So our goal is to discard irrelevant columns quickly, thus
making the matrix slim.

Here is a simple heuristic. Pick a row i∈ [m] and two columns
1⩽ j< j′⩽n.

• If aij⩽aij′ then we know j(1)⩽ ⋅⋅ ⋅ ⩽ j(i)⩽ j by total monotonicity.
So we may discard the box [1, i] × [j+ 1,n], meaning that these
entries may never be minima of their respective rows.

aij aij′

• If aij>aij′ then we know j(m)⩾ ⋅ ⋅ ⋅ ⩾ j(i)⩾ j′. So we may discard
the box [i,m]×[1, j′−1].

aij aij′

By repeated applications of the heuristic, one can discard all irrelevant
entries. But more strategy is needed as we care about efficiency.

For each column j∈[n], we maintain an integer d(j)∈[0,m] such
that the topmost d(j) entries in the column were already discarded.
Initially d(j)=0 and all columns are active.

In each iteration, we pick the leftmost active column j that maxim-
ises d(j). Select row i≔d(j)+1 and the nearest active column j′> j. (If
j′ does not exist then we terminate.) Compare the entries aij and aij′ as
above. In the first case we set d(j′)≔ i>d(j). In the second case we set
𝛼(j)=m and declare column j dead.

Note that we always make progress: either the largest d(j) among
active columns increases, or an active column becomes dead. So the
number of iterations is at most m+n.

It is easy to argue inductively that
After iteration t, we have only looked at columns [t].

Among the active columns j∈[t], the value d(j) strictly
increases with j.



When the process terminates, all columns to the right of j are dead,
so t⩾n. Hence d(j) strictly increases across all active columns. Con-
sequently, there can be at most m active columns. The dead columns
can be safely discarded.

The process can be implemented with a stack:

fn reduce(A)
{assume monotone A∈ℝm×n; shall discard all but m columns}
initialise d(j)≔0 for all j∈[n]
let S be an empty stack
S.push(1) {initially j=1}
j′≔2 {active column right next to j}
repeat

j≔S.top()
i≔d(j)+1
if aij⩽aij′ then

d(j′)≔ i
S.push(j′)
j′≔ j′+1

else
d(j)≔m; declare j dead
S.pop()

until j′>n
return the active columns of A

Now that the fat A is trimmed to a slim A′, we want to apply find-
smallest(A′). However, the submatrix might or might not be mono-
tone. This is why we strengthen Definition 1 as follows:

Definition 2. Amatrix is totally monotone if every submatrix is mono-
tone (in the sense of Definition 1).

Exercise. Show that every vector is totally monotone.

Definition 2 allows us to recurse on the submatrix, applying
reduction whenever necessary. The final algorithm, named after its
inventors Shor, Moran, Aggarwal, Wilber and Klawe, is summarised
below:
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------



Algorithm SMAWK(A)

{assume totally monotone A∈ℝm×n; shall find j(i) for every i∈[m]}
if m⩽2 then

for i∈[m], find j(i) in brute-force
else

if m<n then
A≔reduce(A)

let A′ be the submatrix formed by even rows
find-smallest(A′) {so we get j(2), j(4), . . . }
for k=1,2, . . . ,m/2 do

find j(2k−1) by scanning entries {2k−1}×[j(2k−2), j(2k)]
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

So the time recursion writes

T(m,n)=T(m/2, min{m,n})+O(m+n).

Supposewe start with a slimmatrix. Within log(m/n)⩽m/n recursive
calls the matrix becomes fat. Each call spends time O(n) in the for-
loop, so they cost time O(m) altogether.

As soon as we have reached a fat matrix, the reduction comes into
play. It ensures that n shrinks almost synchronously with m, so the
recursion is essentially T(m+n)=T((m+n)/2)+O(m+n), which has
solution T(m+ n) =O(m+ n). Putting the two phases together, the
total running time is thus T(m,n)=O(m+n).

Finally we take a closer look at Definition 2. Though restrictive, it
still covers a wide range of matrices, for example Monge matrices.

Definition 3. A matrix A=(aij) is Monge if aij+ai+1, j+1 ⩽ai, j+1 + ai+1, j
for all i, j.

Example. Let f : [m]→ℝ and g : [n]→ℝ be two functions. The matrix
defined by aij≔ f (i)+ g(j) is Monge.

Example. Takem and n points on two parallel lines, respectively. Define
aij as the distance from the i-th point on the first line to the j-th point on
the second line. TheMonge property follows from triangle inequality.

Exercise. Show that a matrix A=(aij) is Monge iff aij+ ai′ j′ ⩽aij′ + ai′ j
for all i< i′ and j< j′.



Lemma 4. Every Monge matrix is totally monotone.

Proof. Suppose A is not totally monotone. Then there exists rows i< i′
such that j≔ j(i′)< j(i) ≔j′. In particular, aij> aij′ and ai′ j⩽ai′ j′, thus
aij+ai′ j′ >aij′ +ai′ j, contradicting the definition of Monge matrices. □


