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Intuition
We want to bound tmix from below. What are
the possible reasons accounting for a large tmix?

The state space is too large and cannot be covered in a
short period.
The state space has “bottlenecks”, so we have difficulty
in reaching certain states.
...

We shall describe three methods that exploit the
structure of state space. We will also introduce
another method that directly investigates the
evolution of Markov chain.



Method 1: Cardinality
Suppose the stationary distribution π is uniform over X . Let
G be the transition graph of the chain. Denote by ∆ its
maximum out-degree. What are the states that can be
reached at time t? Clearly no more than ∆t.
Remark. If the chain is reversible, then G is undirected and
we may attain a better upperbound 1 + ∆ ·

∑t−1
i=1(∆− 1)i.

Theorem. tmix(ϵ) ≥ log∆((1− ϵ)|X |).
Proof. Let t equals RHS, and take S to be the set of all
reachable states at time t. Then |S| ≤ ∆t ≤ (1− ϵ)|X |, i.e.
only a small portion of X is reachable. Then we have

∥P t(x, ·)− π∥ ≥ |P t(x, S)− π(S)| = 1− |S|
|X | ≥ ϵ



Method 2: Diameter

Theorem. For all ϵ < 1/2 we have tmix(ϵ) ≥ diam(G)/2.
Proof. Take x, y ∈ X to be the most distant vertices on G.
Let Sx

t and Sx
t stand for the set of reachable states at time t

from x and y, respectively. Write r := diam(G)/2. Obviously,
Sx
r ∩ Sy

r = ∅, hence
∥P r(x, ·)− P r(y, ·)∥ ≥ |P r(x, Sx

r )− P r(x, Sy
r )| = 1− 0 = 1.

By relation between d̄ and d, we know
∥P r(x, ·)− π∥ ≥ 1/2

which implies tmix(ϵ) ≥ r for all ϵ < 1/2.



The previous two methods are almost trivial;
they neglects the rich structure in the transition
matrix as well as in the underlying graph.

The next method incorporates these structural
information, and will be of practical interest.



Method 3: Bottleneck
Roughly speaking, a bottleneck in a graph is a narrow
passage that bridges two or more components. But a mere
appearance of bottleneck says nothing valuable, unless the
stationary probability in some component is high. In that
case, the chain will find itself “trapped” in a low-probability
region and fail to get out.

π(B) = 1/2
π(A) = 1/4

Probability ought to be
high in stationarity.

Probability
concentrates
here in reality.



Definition. We define the bottleneck ratio (or conductance)
of S ⊆ X to be

Φ(S) :=

∑
x∈S,y∈S π(x)P (x, y)

π(S)
=

Pπ

(
Xt ∈ S,Xt+1 ∈ S

)
π(S)

.

Clearly, the numerator indicates “escape probability from S”.

Theorem. Let Φ⋆ := minπ(S)<1/2 Φ(S). Then we have
tmix ≥ 1/(4Φ⋆).

Remark. Why do we optimise over S : π(S) < 1/2?
Intuitively, this corresponds to our discussion that S is a
trapping region – one that ought to have low stationary
distribution yet hard to escape in reality. We shall see in the
proof that such requirement is useful (but can be relaxed).



Proof. Consider a stationary chain (Xt). Under what
consequences can Xt ∈ S? A cursory necessary condition is:
the chain must move from S to S at some step before t. So

Pπ(Xt ∈ S) ≤
t−1∑
i=0

Pπ

(
Xi ∈ S,Xi+1 ∈ S

)
= t · π(S)Φ(S)

Therefore,
Pπ

(
Xt ∈ S | X0 ∈ S

)
≤ t · Φ(S)

So there is some x ∈ S such that P t(x, S) ≤ tΦ(S). (Why?)
In other words, P t(x, S) ≥ 1− tΦ(S). Hence,

∥P t(x, ·)− π∥ ≥ |P t(x, S)− π(S)| ≥ 1− tΦ(S)− π(S).

Note that the discussion above holds for all S. Under the
condition that π(S) < 1/2, the total variation distance is
always greater than 1/2− tΦ(S), giving tmix ≥ 1/(4Φ(S)).

Theorem. Let Φ⋆ := minπ(S)<1/2 Φ(S). Then we have
tmix ≥ 1/(4Φ⋆).



Method 4: Statistics
This method marks a diversion from the previous
ones: It is more “mathematical” since it looks
into the distribution at time t directly.

The intuition is simple: In attempt to prove
∥µ− ν∥ ≥ ϵ, we turn to design some appropriate
statistical quantity to distinguish X ∼ µ and
Y ∼ ν. That is, we design a function f : X → R
and try to argue that the random variables f(X)
and f(Y ) are “distant”. Since f(X) and f(Y ) are
real-valued, they are often much more convenient
for discussion.



Theorem. Fix f : X → R. Let X ∼ µ and Y ∼ ν. If
|E(fX)− E(fY )| ≥ rσ, where σ2 = max{Var(fX),Var(fY )},
then ∥µ− ν∥ ≥ 1− 8/r2.

Proof. This is just an application of Chebyshev’s inequality.
To avoid clutter, we denote X ′ := fX and Y ′ := fY .
Without loss of generality, assume E(X ′) ≥ E(Y ′). Take
interval I := (E(Y ′) + rσ/2, ∞). By Chebyshev,

P(X ′ ∈ I) ≥ 1− (2/r)2

and
P(Y ′ ∈ I) ≤ (2/r)2

We take S := f−1(I), then µ(S) and ν(S) correspond to the
probabilities above, respectively. Therefore,

∥µ− ν∥ ≥ |µ(S)− ν(S)| ≥ 1− 8/r2.

Remark. The converse is not true. If the f is poorly
designed, it could diffuse the distinguishing features into R.



Theorem. Fix f : X → R. Let X ∼ µ and Y ∼ ν. If
|E(fX)− E(fY )| ≥ rσ, where σ2 = [Var(fX) + Var(fY )]/2,
then ∥µ− ν∥ ≥ r2/(4 + r2).

The lower bound could be improved slightly:

Proof sketch. Note that the total variation distance is
translation invariant. So we can always assume E(X ′) = E
and E(Y ′) = −E. Then 2E ≥ rσ by condition.
Assume X ′ ∼ α and Y ′ ∼ β. Then define r := 2α

α+β
and

s := 2β
α+β

. (They are not distributions!) Then we have

(2E)2 =
(
E(X ′)− E(Y ′)

)2
=

(∑
z∈R

z(α(z)− β(z))

)2

By Cauchy-Schwarz, this is less than(∑
z

α(z) + β(z)

2
z2
)(∑

z

α(z) + β(z)

2
(r(z)− s(z))2

)



(∑
z

α(z) + β(z)

2
z2
)(∑

z

α(z) + β(z)

2
(r(z)− s(z))2

)

E(X ′2) + E(Y ′2)

2

Var(X ′) + Var(Y ′) + E2(X ′) + E2(Y ′)

2

σ2 +M2

2
∑
z

(α(z)− β(z))2

α(z) + β(z)

2
∑
z

|α(z)− β(z)|

2∥α− β∥

≤



How can we design a proper statistical quantity? The rule of
thumb is to “encode” the most important feature in a given
problem.

For instance, in the random walk on hypercube {0, 1}d, we
can design f to be the Hamming distance. For detailed
analysis, see the textbook by Levin, Peres and Wilmer.



Philosophical View
Just as in the relation between algorithm and complexity
theory, the investigation on lower bound of mixing times
leads to better understanding of the chains: it points out the
restriction in chain design and suggests improvements. The
negative results also motivate the classification of hardness.

It seems intriguing to explore the relations between certain
families of chains – just as we did in relating different models
of computing. If we could somehow find a universal model of
Markov chains in the sense of running time, then it would be
possible to classify the problems by their intrinsic hardness!


