
Lovász Local Lemma

Yanheng Wang

from probablistic to constructive

Motivation
Quite a few combinatorics problems ask for existence of an
object that satisfies constraint in the following form:∨

B∈B

B =
∧
B∈B

B

where B is a family of “bad events”, or undesired properties.

e.g. Colouring problem: Given a hypergraph H = (V,E) and
q colours, is there a colouring σ : V → [q] so that no edge
e ∈ E is monochromatic under σ?

• We are seeking for some σ : V → [q];
• For each e ∈ E, we create a bad event Be, meaning

that “σ(e) is monochromatic.” Let B := {Be | e ∈ E};
• Now the constraint on σ can be expressed by

∧
B∈B B.

The Lovász Local Lemma helps us identify sufficient
conditions of the object’s existence. For instance, we can
apply it to Colouring and identify a condition that guarantees
the existence of a proper colouring σ in H.

Remark. The condition it yields might not be necessary in
most cases. Nonetheless, it demonstrates the power of
probablistic argument, even if the original problem (e.g.
Colouring) has nothing to do with randomness!

Basic Ideas
Goal: Prove existence of an object satisfying

∧
B∈B B.

Idea: Impose a probability space; Prove that P(
∩

B∈B B) > 0.

Clearly the idea implies the goal. But how can we achieve
the idea? After all, the probability is typically difficult to
calculate. Here are two possible solutions:

• Define some related random variables and bound their
expectations (which is usually easier), then use the
relation between expectation and probabilty.

• Compute P(B) for each B ∈ B (which is usually easy),
and use them to bound P(

∩
B∈B B). Lovász Local

Lemma delves in the relation and makes it applicable
broadly.

Compute P(B) for each B ∈ B (which is usually easy), and
use them to bound P(

∩
B∈B B). Lovász Local Lemma delves

in the relation and makes it applicable broadly.

Now consider the following trivial scenario. Suppose we have
computed P(B) for each individual B ∈ B. In addition, we
know the events in class B are mutually independent. Then,
it is trivial to deduce

P

(∩
B∈B

B

)
=
∏
B∈B

(1− P(B)).

Next comes the question: what if the events in class B are
not mutually independent?

Definition. Given a family of events, B, we call the graph
G = (B,D) its dependency graph if B and B \ ∂•B are
mutually independent for all B ∈ B.

Compute P(B) for each B ∈ B (which is usually easy), and
use them to bound P(

∩
B∈B B). Lovász Local Lemma delves

in the relation and makes it applicable broadly.

Remark. Intuitively, D captures the dependency of events;
adjacent events are possibly dependent while non-adjacent
ones are independent.

Notation. Given a graph (V,E) and v ∈ V , we denote
∂v := {u ∈ V | (v, u) ∈ E}. We also denote ∂•v := ∂v ∪ {v}.

Compute P(B) for each B ∈ B (which is usually easy), and
use them to bound P(

∩
B∈B B). Lovász Local Lemma delves

in the relation and makes it applicable broadly.

Lovász Local Lemma. Fix B and its dependency graph. If
there is an assignment p : B → (0, 1) such that

P(B) ≤ p(B)
∏

B′∈∂B

(1− p(B′))

for all B ∈ B, then we have

P

(∩
B∈B

B

)
≥
∏
B∈B

(1− p(B)) > 0.

Remark. This lemma could bound P(
∩

B∈B B) even if the
events in the family were not mutually independent, thus
lending itself broadly applicable. But please be noted that if
|∂B| is too large (i.e. the dependency is too high), then the
condition is likely to break.

Lovász Local Lemma. Fix B and its dependency graph. If
there is an assignment p : B → (0, 1) such that

P(B) ≤ p(B)
∏

B′∈∂B

(1− p(B′))

for all B ∈ B, then we have

P

(∩
B∈B

B

)
≥
∏
B∈B

(1− p(B)) > 0.

An Inductive Proof

We shall prove a stronger claim:

Claim. Under the same condition of the lemma, we have
P(
∩

B∈B B) ≥ (1− p(B⋆)) · P(
∩

B∈B\{B⋆} B) for any B⋆ ∈ B.

Proof. By induction on |B|.

LHS = 1− P(B⋆); RHS = 1− p(B⋆);
By condition of the lemma, LHS ≥ RHS.

|B| = 1.

Claim. Under the same condition of the lemma, we have
P(
∩

B∈B B) ≥ (1− p(B⋆)) · P(
∩

B∈B\{B⋆} B) for any B⋆ ∈ B.

|B| ≥ 2. To simplify notation, let B⋆ := B \ {B⋆}. Then,
P
(∩

B∈B B
)
= P

(∩
B∈B⋆

B
)
− P

(
B⋆ ∩

∩
B∈B⋆

B
)
.

• ≤ P
(
B⋆ ∩

∩
B ̸∈∂•B⋆

B
)
= P(B⋆) · P

(∩
B ̸∈∂•B⋆

B
)

Now let us bridge the gap between • and •. This is easy:
just incrementally add events in ∂B⋆ to •. In each step,
we use I.H. to obtain a relation (“telescoping”). Thus,

• ≤ • · 1∏
B∈∂B⋆

(1− p(B))

Therefore, by the condition of the lemma, we obtain
• ≤ • · p(B⋆). Plugging it into the first equation proves
the claim.

Applcation to Colouring
Lovász Local Lemma. Fix B and its dependency graph. If
there is an assignment p : B → (0, 1) such that

P(B) ≤ p(B)
∏

B′∈∂B

(1− p(B′))

for all B ∈ B, then we have

P

(∩
B∈B

B

)
≥
∏
B∈B

(1− p(B)) > 0.

Probability space. We colour each vertex v randomly and
independently. Formally, σ is a uniform random vector on
the space [q]V .
Bad events. As before, we define Be to be the event that
σ(e) is monochromatic. B := {Be | e ∈ E}.

Dependency graph. According to our probability space,
(Be, Be′) ∈ D ⇐⇒ e ∩ e′ ̸= ∅.

Lovász Local Lemma. Fix B and its dependency graph. If
there is an assignment p : B → (0, 1) such that

P(B) ≤ p(B)
∏

B′∈∂B

(1− p(B′))

for all B ∈ B, then we have

P

(∩
B∈B

B

)
≥
∏
B∈B

(1− p(B)) > 0.

Suppose that ∀e ∈ E we have (1) |e| = k; (2) e intersects
with at most d other edges. A direct calculation shows that
P(Be) = q · q−k = q1−k; in addition, |∂Be| ≤ d.

We could pick p as follows: p(Be) := 1/(1 + d) for all e ∈ E.
After some computation, we conclude that
P(B) ≤ p(B)

∏
B′∈∂B(1− p(B′)) whenever e(d+ 1) ≤ qk−1,

where e = 2.718.... Hence by the lemma, under the condition
e(d+ 1) ≤ qk−1, there must be a proper colouring in H.

What Next?

It’s remarkable to derive existential conditions via Lovász
Local Lemma. But reassuring the existence is one thing,
describing its appearance is another...
Can we construct the solution explicitly? Say, can we
construct the proper colouring σ so long as e(d+ 1) ≤ qk−1?

The lemma itself is probablistic. It doesn’t show us an
obvious algorithmic way to construct such a solution. So, it
turns out to be a major breakthrough when Moser and
Tardos accomplished this in 2010 with very mild restriction.

Constructive Version of LLL
The orginal version of LLL doesn’t include the concept of a
“solution”. So, before we get into the constructive
counterpart, we must model a solution first.

Perhaps the most natural way is to introduce a set of
variables, X . Each variable takes value from its prescribed
domain. A solution of the problem is merely an evaluation
(or combination if you like) of all these variables that satisify
the constraint

∧
B∈B B.

Remark. The variables here are deterministic, since we are
modelling a solution for a combinatorics problem where no
randomness is involved. (e.g. Colouring, LP, SAT, and so on.)
We do use randomness later, however, to perform arguments.

Now we shall make explicit the connections between variables
and events.

Definition. Let x ∈ X and B ∈ B. We say x underlies B if
the change in value x could result in different outcomes of B.
We denote by vbl(B) the set of variables that underlies B.

e.g. In the Colouring example, X = {xv | v ∈ V }. The
domain for each xv is [q]. Then vbl(Be) = {xv | v ∈ e}, since
the colours of remote vertices have nothing to do with the
outcome of Be.

From this point on, we introduce randomness. First, we
impose on each x ∈ X a distribution; Second, we require that
all variables in X are mutually independent. There’s no
restriction other than these two, so it’s basically free to
design the probability space (i.e. the detailed distributions).

Once the probability space is settled, we can readily port the
definition of dependency graph to the current context.

Definition. Fix a set of (random) variables X that conform
to the requirements above, and a family of events B. We call
the graph G = (B,D) a dependency graph, where
D := {(B,B′) ∈

(B
2

)
| vbl(B) ∩ vbl(B′) ̸= ∅}.

LLL, Constructive Version. Fix X , B and its dependency
graph. If there is an assignment p : B → (0, 1) such that

P(B) ≤ p(B)
∏

B′∈∂B

(1− p(B′))

for all B ∈ B, then the following algorithm produces a
solution in expected time O

(∑
B∈B

p(B)
1−p(B)

)
:

foreach x ∈ X do
sample x independently according to its distribution

while ∃B ∈ B : B[X] is true do
take such a B arbitrarily
foreach x ∈ vbl(B) do

sample x independently according to its distribution
return the current evaluation of all x ∈ X

Remark. The time is charged in steps of samplings. Thus
it’s the user’s responsibilty to provide an efficient sampling
subroutine.

foreach x ∈ X do
sample x independently according to its distribution

while ∃B ∈ B : B[X] is true do
take such a B arbitrarily
foreach x ∈ vbl(B) do

sample x independently according to its distribution
return the current evaluation of all x ∈ X

Observe that the algorithm always produces a legal solution
whenever it terminates. The hard part is: Why does it
terminate (and even terminates quickly)? We will analyse its
behaviour in the rest of the slides.
Remark. The lemma says that the algorithm terminates
quickly in expectation. This is strong enough for proving its
termination under all consequences: If there were some
possitive probability that it doesn’t terminate, then the
expectation would have diverged.

For each x ∈ X , define an infinite i.i.d. random sequence
(x(t)) that has the same distribution as x. So we have |X |
sequences in total, all of which are independent. They serve
as the random source to drive our algorithm.

x1

x2

xn

...

x
(1)
1 , x

(2)
1 , x

(3)
1 , . . .

x
(1)
2 , x

(2)
2 , x

(3)
2 , . . .

x
(1)
n , x

(2)
n , x

(3)
n , . . .

Every time the algorithm
decides to sample x ∈ X ,
it goes to the random
sequence (x(t)) and
retrieve the next fresh
variable.

Remark. We won’t do this in a practical implementation, of
course. The notion of infinite random source is for analysis
purpose only. It is clearly equivalent to generating random
variables on demand.

So long as the values of the random source are determined,
the trajectory of the algorithm is uniquely determined; Put it
in another way, the trajectory of the algorithm is a random
variable depends on the random source only.
Definition. The log of the algorithm is a list L ∈ B∗ ∪ B∞

that drops down the chosen event B in each round of
execution. It could be finite or infinite, depending on
whether or not the algorithm terminates. As noted above, L
is a random list depends solely on the random source.

e.g. L = (B3, B2, B5, B2) means that the algorithm considers
B3, B2, B5 and B2 in its first four rounds of execution, and
terminates afterwards.

Definition. We define NB to be the number of occurrences
of B in L. Ultimately, we will bound E(NB) for all B ∈ B,
then the analysis would be complete.

A key concept in the analysis is defined below.

Definition. A rooted tree is called a witness tree if
1. Each vertex v is associated with a label ♯v ∈ B;
2. For any vertex v, its children have distinct labels;
3. For any vertex v and any of its child u, (♯v, ♯u) ∈ D.

e.g.

Dependency Graph A Witness Tree

B1

B2

B3

B4

B3

B3

B2 B4

This definition seems somewhat technical. But it becomes
natural later.

Definition. A rooted tree is called a witness tree if
1. Each vertex v is associated with a label ♯v ∈ B;
2. For any vertex v, its children have distinct labels;
3. For any vertex v and any of its child u, (♯u, ♯v) ∈ D.

Let L be the log of the algorithm. We construct a sequence
of witness trees (Tt). The procedure for constructing Tt is

the root of Tt is labelled L[t]
for i = t− 1, . . . , 1 do

if ∃v ∈ Tt : (L[i], ♯v) ∈ D then
v := the deepest one with such property
attach to v a new child u, with ♯u := L[i]

Lemma. Suppose vertices u, v ∈ Tt have depths du and dv,
respectively. If du ≥ dv, then either (♯u, ♯v) ̸∈ D, or u is
attached later than v.
Corollary. If du = dv, then (♯u, ♯v) /∈ D. In specific,
♯u ̸= ♯v. Therefore, requirement 2 is satisfied and Tt is indeed
a witness tree.

Definition. A rooted tree is called a witness tree if
1. Each vertex v is associated with a label ♯v ∈ B;
2. For any vertex v, its children have distinct labels;
3. For any vertex v and any of its child u, (♯v, ♯u) ∈ D.

Lemma. Any witness tree T⋆ cannot appear twice in (Tt).
Proof. Suppose it appears twice, say at time t1 < t2. Then
according to the procedure L[t1] = L[t2], hence Tt2 must be
strictly bigger than Tt1 , a contradiction.

Corollary. Let TB be the collection of all witness trees with
root label B, then NB =

∑
T⋆∈TB

1[T⋆ occurs in (Tt)].
This directly implies a way of bounding E(NB):

E(NB) =
∑

T⋆∈TB

P(T⋆ occurs in (Tt))

Theorem. Fix a witness tree T⋆, then P(T⋆ occurs in (Tt))
is at most

∏
v∈T⋆

P(♯v).

Proof. If T⋆ occurs in (Tt), say at time t, let us read
information from the structure of T⋆ = Tt. We first list the
vertices of T⋆ in depth-decreasing order: v1, v2, . . . , vn with
d1 ≥ d2 ≥ · · · ≥ dn = 0. Define ij to be the iteration vj was
added to Tt; be alert that it’s a random variable.
For each vj we know ♯vj = L[ij], so the event ♯vj happened
at time ij in the algorithm, whose probability is P(♯vj). But
the algorithm immediately resamples all x ∈ vbl(♯vj) by fresh
randomness, which effectively cuts off the connections
between the current event ♯vj and all events ♯vj+1, . . . , ♯vn.
(Recall that dj ≥ dk imples either ij < ik or ♯vj has nothing
to do with ♯vk.) Therefore, when we crawl along the vertices
in order, we get the overall probability

∏n
j=1 P(♯vj), proving

the theorem.

Problem. We use informal descriptions when we argue that
♯xj+1, . . . , ♯xn are independent of the current event ♯xj .
Please formalise the argument by rephrasing it in the
language of random source. (Hint: At the time ik, what
random variables drove the event ♯xk to happen?)

Problem. Try to simplify the proof by listing the vertices in
reverse order they were attached to Tt.

Now that we know
E(NB) ≤

∑
T⋆∈TB

∏
v∈T⋆

P(♯v)

How can we bound it? We do so by introducing a conceptual
random process.

the root of the tree is labelled B
d := 0
repeat

foreach v at depth d do
foreach B′ ∈ ∂(♯v) do

with probability p(B′), attach to v a child
u, with ♯u := B′

d := d+ 1
until there is no vertex at depth d;

Keep in mind that the probability space here is a brand new
one. The process strictly follows the definition of a witness
tree, so it’s of course closely related with TB .

the root of the tree is labelled B
d := 0
repeat

foreach v at depth d do
foreach B′ ∈ ∂•(♯v) do

with probability p(B′), attach to v a child
u, with ♯u := B′

d := d+ 1
until there is no vertex at depth d;

Observations.
If it terminates, the process generates a witness tree in TB .
Any T⋆ ∈ TB has some probability of being generated, in
specific, the probability is

q(T⋆) :=
1− p(B)

p(B)

∏
v∈T⋆

p(♯v)
∏

B′∈∂(♯v)

(1− p(B′))

≥ 1− p(B)

p(B)

∏
v∈T⋆

P(♯v)

By direct calculation

By assumption of LLL

Therefore,

E(NB) ≤
∑

T⋆∈TB

p(B)

1− p(B)
q(T⋆)

=
p(B)

1− p(B)

∑
T⋆∈TB

q(T⋆)

≤ p(B)

1− p(B)

q(T⋆) ≥
1− p(B)

p(B)

∏
v∈T⋆

P(♯v) E(NB) ≤
∑

T⋆∈TB

∏
v∈T⋆

P(♯v)

Remark. The key technique here is to relate the product
term with a probability that resides in an entirely different
probability space.

Definition. A rooted tree is called a witness tree if
1. Each vertex v is associated with a label ♯v ∈ B;
2. For any vertex v, its children have distinct labels;
3. For any vertex v and any of its child u, (♯v, ♯u) ∈ D.

Witness Tree, Revisited

Let’s review the definition of a witness tree. Requirements 2
and 3 are indeed designed to make the probability q in the
conceptual process has a factor p(·)

∏
B′∈∂·(1− p(B′)), so

that we could use the assumption of LLL to bridge the two
probability space.

One might ask why we work on (Tt) instead of on L directly.
Indeed, it’s easy to bound the probability P(L = L⋆) for any
L⋆. However, it’s hard to generate a legal L⋆. A naïve
approach of generating all sequences in B∗ ∪ B∞ doesn’t
work because legal L⋆’s embed very sparsely.

