THE KMP ALGORITHM

Yanheng Wang

The string matching problem asks if a “snippet” s[0...m] appears
as a substring in the “text” t[0...n]. In other words, we are searching
for a shift i such that s[0...m] =t[i...i+m].

Here is a skeleton algorithm, with details to be filled:

Algorithm Skeleton

fori=0,...,ndo
find the maximum ¢ such that s[0...¢]=t[i...i+ {]
if {=m then
return true

return false

We can interpret it as sliding the snippet over the text. Initially s
and t are aligned to the left. In each iteration we shift s to the right and
verify if it agrees with t vertically.

S bba bba bba
t abcbbac abcbbac abcbbac

Naively we could implement the “find” by comparing s[j] with
t[i+ j] for every j, which costs O(m) time. A worst-case example is
s=aaab and t = aaaaaaaaa: for each i we need ©(m) comparisons,
only to find that s and t disagree on a single letter. The total running
time is thus © (mn).

The Knuth-Morris-Pratt algorithm swiftly reuses previous com-
parisons to save time. Assume that we have computed ¢, thus

S[0...0]=t[i...i+ ). (1)

Now we want to increase the shift i to i + 6. However, not all §'s are
worth considering. If i+ § is correct, i.e. s[0...m]=t[i+J...i++m],
then in particular

s[0...0—=6]=t[i+d...i+{]. (2)



The picture below illustrates the two equations.

Now from (1) and (2) we deduce a necessary condition
s[é...0] = t[i+4...i+ €] = s[0...£-9],
so it is safe to increase i by
Spi=min{d>1:s[6...0]=s[0...0—6]}.

In case that § does not exist we set §;:= ¢+ 1. The correctness of the
algorithm below follows.

Algorithm KMP (part 1)

compute d, ..., 0n
i:=0
{:=-1
while i<n do
whiles[{+1]=t[i+{+1] do
{:=0+1
{now € is maximal such that s[0... 0] =t[i...i+ (]}
if {=m then
return true
i:=i+ 0y
0:=0—6y
{now we still have s[0...0]1=t[i...i+ (]}

Assuming that dy, ..., d,, can be computed quickly, let us analyse
the running time of the rest. Visually, each iteration of the outer loop
first pushes the red cell to the right by some (possibly 0) distance, and
then shifts the snippet to the right by some positive distance. The cost
is proportional to their combined displacements. Since neither the red
cell or the snippet can travel more than n units over the course of the
algorithm, the total cost is bounded by O(n).



Formally, 27+ ¢ strictly increases at each iteration of the inner loop,
and also after every update of (i, f) in the outer loop. Since 2i+ ¢ <
2n+m=0(n) throughout, the number of steps is upper bounded by
O(n).

Next we explain how to compute dy,...,d,, in linear time. A picture
would help clarify the definition of 4,

SIO (5@ J4 |

o ]
s 0 (-4 |

Exercise. Show that1=0p<--- <0, <m+1.

To hunt for 6,41, we start from é:= 6y and increase the value gradu-
ally. Visually this corresponds to shifting the second s to the right. In
the beginning we have s[...{]=s[0...f—0J]. Our goal is keeping this
equation while making s[{+ 1] =s[{+1—J] as well.

A familiar situation, isn't it? Using the argument as in (1) and (2),
we can safely increase 6 by d,_; instead of one. Moreover, as s[4...{] =
s[0...0— 6] is preserved, we only have to check if s[{+1]=s[{— {5 +1].
If so then we are done; otherwise we iterate.

Algorithm KMP (part 2)
(5:50:: 1
for (=0,...,m—1do
whiles[{+1]#s[f{+1—6] do

6:=0+04_5
{invariant: s[6...£]1=s[0...£— 4]}
0p41:=6

The running time is captured by the number of updates to 6. Since
every update strictly increases 9, and since 6 <m + 1 always, the time
is linear as desired.

To conclude the note, we mention that J,, is exactly the period of
string s. That is, s[i] =s[i+ J,,] for all 7, and no natural number below
Om satisfies the property.

Exercise. Prove it.



