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A polynomial 𝒑 = (p0, . . . , pn) is a finite sequence of real numbers.
The function 𝒑(x) induced by 𝒑 is defined by

𝒑(x)≔�
i=0

n

pjx j.

For polynomials 𝒂=(a0, . . . ,an) and 𝒃=(b0, . . . ,bn), we define their sum
as 𝒂 + 𝒃 ≔ (a0 + b0, . . . , an+ bn), and their product as 𝒂 ∗ 𝒃≔ (c0, . . . , c2n)
where ck≔∑j+ j′=k ajbj′. It is easy to verify that

(𝒂+𝒃)(x) = 𝒂(x)+𝒃(x)
(𝒂∗𝒃)(x) = 𝒂(x)𝒃(x) (1)

for all x. So polynomial addition and multiplication are in line with
the usual notions of function addition and multiplication.

Multiplying two polynomials needs Θ(n2) time if we follow the
definition plainly. Can we do it faster? To this end we need an altern-
ative representation.

Let us fix m+1 points X={x0, . . . ,xm}. Given an arbitrary polyno-
mial 𝒑=(p0, . . . ,pn) where n⩽m, we evaluate the function 𝒑(x) on X.
This can be expressed as
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where 𝟎 pads the vector with m−n zeros. The van der Monde matrix
in the middle is invertible as x0, . . . ,xm are distinct. Hence (p0, . . . ,pn)
and (𝒑(x0),...,𝒑(xm)) uniquely determine each other, andwe shall call
them the standard and functional representations, respectively, of the
same polynomial 𝒑.

∗. The note is inspired by a lecture by Erik Demaine.



In the functional representation, polynomial product becomes
point-wise product; see (1). This suggests the following method for
computing 𝒂∗𝒃 ≔𝒄.

• Fix m≔2n and distinct points x0, . . . ,xm.
• Convert 𝒂 and 𝒃 to functional representations (𝒂(x0), . . . , 𝒂(xm))

and (𝒃(x0), . . . , 𝒃(xm)).
• Multiply point-wise to obtain (𝒄(x0), . . . , 𝒄(xm)), the functional

representation of 𝒄.
• Convert 𝒄 back to its standard representation.

The “multiply” step costs merely Θ(n) time. Next we will show how
to implement the conversions in Θ(n log n) time.

We begin with the forward conversion, i.e. evaluating a polyno-
mial 𝒑=(p0, . . . ,pn) at points X. A naïve implementation would incur
Θ(n2) cost. To speed it up, let us try divide-and-conquer by breaking
the evaluation at x∈X into odd and even parts:
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Hence, denoting 𝒑even ≔(p0,p2, . . .) and 𝒑odd≔(p1,p3, . . . ), we have the
identity 𝒑(x) = 𝒑even(x2) + x ⋅ 𝒑odd(x2). This immediately leads to the
following algorithm:

fn evaluate(𝒑, X)
if 𝒑=(p0) then

return (p0, . . . ,p0)
else

X′≔{x2 :x∈X}
𝒑even ≔(p0,p2, . . . )
𝒑odd ≔(p1,p3, . . . )
return evaluate(𝒑even,X′)+X ⋅ evaluate(𝒑odd,X′)

Let T(n) denote the running time. Clearly we have the recursion

T(n)=2T(n/2)+Θ(m),



thus T= Θ(nm)= Θ(n2). Unfortunately it is no better than the naïve
solution.

But we have a last resort. So far we did not assume any specific
property of the evaluation points X. Can we craft X so that it halves
in size after each recursive call?

Yes! If we set X ≔ {(m + 1)-th roots of unity} ⊆ ℂ, then after
squaring, one half of the points fold into the other half, and we obtain
X′ = ��m+1

2 �-th roots of unity�. With this choice, the running time
recursion becomes

T(n+m)=2T((n+m)/2).

Hence T=Θ(n log n).
The divide-and-conquer algorithm invoked on such X is dubbed

Fast Fourier Transform. Why is the name? Recall equation (2): the van
der Monde matrix contains entries xjk= exp�i ⋅ 2𝜋 j k

m+1� = cos� 2𝜋 j k
m+1� + i ⋅

sin� 2𝜋 j k
m+1�, which form a Fourier basis. So evaluating 𝒑 at X is equi-

valent to mixing the sine/cosine waves of different frequencies via
coefficients 𝒑. In Fourier analysis jargon, the standard representation
lives in frequency domain, and the functional representation lives in
time domain.

How do we convert from functional representation back to
standard representation? Let us derive an inverse formula based on
equation (2). We claim that, with our choice of X,
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where the bars denote complex conjugate. Indeed, we calculate the
result at cell (j,k) by
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If j=k then the result ism+1. Otherwise, the summands rotate around
the unit circle in the complex plane and cancel each other, so we get
a zero.

With the claim we derive
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Now comes the punchline. If we pretend (𝒑(x0), . . . , 𝒑(xm)) as a poly-
nomial, then (m+ 1) ⋅ (p0, . . . , pn, 𝟎) is exactly its evaluation at points
x0, . . . ,xm. Since {x0, . . . ,xm}=X, we can recover all information by just
calling evaluate((𝒑(x0), . . . , 𝒑(xm)), X)!


