
Coupling from the Past

Yanheng Wang | 31 July



Monte Carlo v.s. Las Vegas

One runs the algorithm
for a bounded time, and
there is a small chance of
error after the run.

MCMC
∥µP t − π∥ < ϵ when halting at
t = O(p(n, 1/ϵ)).



Monte Carlo v.s. Las Vegas

One runs the algorithm
for a bounded time, and
there is a small chance of
error after the run.

One runs the algorithm
inde nitely, until he gets the
correct answer. The expected
time is bounded, however.

MCMC CFTP
∥µP t − π∥ < ϵ when halting at
t = O(p(n, 1/ϵ)).

∥µPT − π∥ = 0 when halting;
E[T ] = O(p(n)).



A Different Description of MC

De nition. Suppose S is a random variable over the
space S . Fix a function f : X × S → X . We say that
S together with f induce a transition matrix
P (x, y) := Pr[f(x, S) = y] where x, y ∈ X .

It’s convenient to think of Markov chains from a
different point of view.
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De nition. Suppose S is a random variable over the
space S . Fix a function f : X × S → X . We say that
S together with f induce a transition matrix
P (x, y) := Pr[f(x, S) = y] where x, y ∈ X .

e.g. Metropolis chain of q-colouring can be generated by

S := {1, 2, . . . , n}× {1, 2, . . . , q}

S is uniformly distributed on S
f(x, s) := “Decode the tuple s = (i, c); Colour the i-th position
of x as c and return the new colouring.”

Theorem. Suppose S and f induce P . If {St} is an
i.i.d. sequence in the same distribution as S , then the
sequence generated by Xt := f(Xt−1, St) forms a
Markov chain with transition matrix P .

X := {All colourings on graph G}



An Introductory Scenario

Suppose you are told (by an idiot) to generate a
random binary string β ∈ {0, 1}n via a Markov chain.
Here’s a natural construction. In each step,

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bit 0; otherwise, set the i-th bit 1.

Problem. Define S , S , and f(x, s).



An Introductory Scenario

Suppose you are told (by an idiot) to generate a
random binary string β ∈ {0, 1}n via a Markov chain.
Here’s a natural construction. In each step,

What’s the stationary distribution π of this chain?

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bit 0; otherwise, set the i-th bit 1.

Problem. Define S , S , and f(x, s).



Now denote {Xx
t } as the Markov chain started from the

initial binary string x ∈ {0, 1}n.
We couple all these 2n chains together by “sharing the
random source {St}”:

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bits in all chains 0; otherwise, set the i-th bits in
all chains 1.

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bit 0; otherwise, set the i-th bit 1.



X10
t+1 = 00X01

t+1 = 00

X01
t = 01

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bits in all chains 0; otherwise, set the i-th bits in
all chains 1.

e.g. n = 2

X00
t = 01 X10

t = 00 X11
t = 11

We select randomly i = 2, and the coin lands heads up.

X00
t+1 = 00 X11

t+1 = 10



De nition. We define a partial order ≤ on the space
{0, 1}n as follows:
b1b2 . . . bn ≤ b′1b

′
2 . . . b

′
n ⇐⇒ bi ≤ b′i for all i.

e.g. 0011010 ≤ 0111011

1. Select a random position 1 ≤ i ≤ n;
2. Flip a fair coin. If it lands heads up, set the i-th
bits in all chains 0; otherwise, set the i-th bits in
all chains 1.

Observation. If Xx
t ≤ Xy

t , then Xx
t+1 ≤ Xy

t+1.
Observation. Xx

t ≤ X11...1
t , for all x and t. Similarly,

X00...0
t ≤ Xx

t for all x and t.



Observation. Xx
t ≤ X11...1

t , for all x and t. Similarly,
X00...0

t ≤ Xx
t for all x and t.

NowBorn
of E

arth

−∞

T :=
−10

00

X11...1
T = 11 . . . 1

X00...0
T = 00 . . . 0 What could we say

about this state?



Claim. Started at time T < 0, if the simulation for
{X11...1

t } and {X00...0
t } meets at state X at time 0,

i.e. X11...1
0 = X00...0

0 = X , then X ∼ π.
Remark. Strictly speaking, we must clarify why the simulation result X
is random. We’ll be back on a more formal version soon. My point
here is to give you a taste on how the argument should proceed.

“Proof.”
By our observation, Xx

0 is bounded betweenX00...0
0 and X11...1

0 for
all x. Since the upper bound coincide with the lower bound, we must
conclude that everything collapses to the single point X .
Now imagine a fictional chain started at the born of Earth. It runs long
enough so it must have converged to stationary π now. But let us
recall that when it enters the zone [T, 0], it must be bounded as well.
Therefore, its current state also equals X . So, X ∼ π.



Observation. Xx
t ≤ X11...1

t , for all x and t. Similarly,
X00...0

t ≤ Xx
t for all x and t.

NowBorn
of E

arth

−∞

T :=
−10

0

X11...1
T = 11 . . . 1

X00...0
T = 00 . . . 0

Decrease T and try again!

?



T := −1/2
repeat

T := 2T
X⊤

T := ⊤; X⊥
T := ⊥

for t := T + 1 . . . 0 do
Choose independently St ∼ S
X⊤

t := f(X⊤
t−1, St)

X⊥
t := f(X⊥

t−1, St)

until X⊤
0 = X⊥

0 ;
return X⊤

0

CFTP in General

We have a chain generated by S and f : X × S → X .
In addition, we have a partial order ≤ defined on X .
Theorem. If ∀s ∈ S, x1 ≤ x2 ⇒ f(x1, s) ≤ f(x2, s),
then the following algorithm returns a random sample
over X with stationary distribution of the chain.

Remark. In subsequent
rounds, we do not pick
fresh variables if they had
been chosen in former
rounds!



T := −1/2
repeat

T := 2T
X⊤

T := ⊤; X⊥
T := ⊥

for t := T + 1 . . . 0 do
Choose independently St ∼ S
X⊤

t := f(X⊤
t−1, St)

X⊥
t := f(X⊥

t−1, St)

until X⊤
0 = X⊥

0 ;
return X⊤

0

Proof. Consider the moment
before we return.
We have in essence picked T
independent random variables
ST+1, ST+2, . . . , S0 and used
them to drive two chains,
namely, {X⊤

t } and {X⊥
t }.

Since f(x, s) is monotone with respect to x, we know for sure that Xx
0 is

bounded between X⊤
0 and X⊥

0 , for all x ∈ X .
Let’s imagine a fictional chain started at the born of Earth. We cut it off at
time T , and drive it using our random variables ST+1, . . . , S0 from then
on. Since it runs long enough, it must have converged to stationary π at
time 0. But since its current state is bounded by X⊤

0 from above, and X⊥
0

from below, and because X⊤
0 = X⊥

0 , we must confess that they coincide.
Thus, X⊤

0 ∼ π.



T := −1/2
repeat

T := 2T
X⊤

T := ⊤; X⊥
T := ⊥

for t := T + 1 . . . 0 do
Choose independently St ∼ S
X⊤

t := f(X⊤
t−1, St)

X⊥
t := f(X⊥

t−1, St)

until X⊤
0 = X⊥

0 ;
return X⊤

0

Proof.(Concise and formal version)
To avoid clutter, denote ft(x) := f(x, St). (It gives a random variable
parameterised by x.) Further denote gt2t1 := ft2 ◦ · · · ◦ ft1 . Let
Y := gT−∞(x), and Z := g0−∞(x). Clearly,
(1) Z ∼ π;
(2) Z = g0T+1 ◦ gT−∞(x) = g0T+1(Y ).
But we know that the function g0T+1 collapses everything to a single point
X⊤

0 when the procedure terminates, we must conclude that Z = X⊤
0 .

Thus X⊤
0 ∼ π.



Coupling to the Future?



Coupling to the Future?

Problem. Try to devise a “coupling to the future”
method, and see where the proof breaks down.

Problem. Why must we reuse variables that had been
chosen in previous rounds? Can we use fresh random
variables in each round? (Hint: Consider the algorithm as
a whole. What is the distribution of {St} if you observe
from outside?)



Analysing the Expected Time

De nition. Let T ∗ be the value of −T when the
procedure exits.

We wish to bound E[T ∗] by a polynomial.
A lower bound is immediate: E[T ∗] ≥ tmix/4.



Analysing the Expected Time

De nition. Let T ∗ be the value of −T when the
procedure exits.

We wish to bound E[T ∗] by a polynomial.
A lower bound is immediate: E[T ∗] ≥ tmix/4.

E[T ∗] =
∞∑

i=0

Pr[T ∗ > i]

What about the upper bound? We
write the expectation as



E[T ∗] =
∞∑

i=0

Pr[T ∗ > i]

Pr[T ∗ > i] = Pr[X⊤
0;−i > X⊥

0;−i]

≤ Pr[φ(X⊤
0;−i)− φ(X⊥

0;−i) > 0]

≤ E[φ(X⊤
0;−i)− φ(X⊥

0;−i)]

= E[φ(X⊤
0;−i)]− E[φ(X⊥

0;−i)]

=
∑

x∈X

φ(x)(Pr[X⊤
0;−i = x]− Pr[X⊥

0;−i = x])

≤ h · d(i)

Let φ : X → N be a function satisfying x < y ⇒ φ(x) < φ(y).
not X !

defined on X defined on N

where h := maxx∈X φ(x), and d(i) := maxµ,ν∥µP i − νP i∥.



E[T ∗] =
∞∑

i=0

Pr[T ∗ > i] Pr[T ∗ > i] ≤ ℓ · d(i)

E[T ∗] =
∞∑

b=0

m−1∑

r=0

Pr[T ∗ > bm+ r]

≤
∞∑

b=0

m · Pr[T ∗ > bm]

≤
∞∑

b=0

m · h · d(bm)

≤
∞∑

b=0

m · h · d(m)b

We will do the summation in blocks of size m.

And it’s well-known that d(k · t) ≤ d(t)k .

Take, say, m := tmix.



Realistic Example: The Ising Model

= +1
= −1

De nition. A spin con guration of a graph
is an assignment x : V → {+1,−1}.

De nition. The energy of a spin
configuration σ is defined as
H(x) := −

∑
{u,v}∈E x(u)x(v).

Remark. The energy increases when the
contention strengthens between
neighbours. (Note that we consider only
adjacent vertices, an approximation of the
real world!)



In physical world, the probability that configuration σ
occurs is given by π(x) := 1

Zβ
e−βH(x), with β > 0 a

constant and Zβ the normalizing factor. This is what we
call “the principle of minimum energy”.



In physical world, the probability that configuration σ
occurs is given by π(x) := 1

Zβ
e−βH(x), with β > 0 a

constant and Zβ the normalizing factor. This is what we
call “the principle of minimum energy”.

Design of Markov chain:
Space X := {+1,−1}V .
Space S := V × [0, 1].
S is uniformly distributed on S .
f(x, s) is defined as
1. Unpack s =: (v, r);
2. Let x+ and x− be the configurations yielded from xt−1 by
mapping the vertex v to +1 and −1, respectively;
3. If r <

π(x+)

π(x+)+π(x−) , return x+ ; otherwise, return x− .

And we couple the chains by sharing randomness, as usual.



De nition. We define a partial order ≤ on space X ,
much the same way as before:
x ≤ x′ ⇐⇒ ∀v ∈ V : x(v) ≤ x′(v).

And we also have Xx
t−1 ≤ Xy

t−1 ⇒ Xx
t ≤ Xy

t in our
coupling.



De nition. We define a partial order ≤ on space X ,
much the same way as before:
x ≤ x′ ⇐⇒ ∀v ∈ V : x(v) ≤ x′(v).

And we also have Xx
t−1 ≤ Xy

t−1 ⇒ Xx
t ≤ Xy

t in our
coupling.

Finally, we have top element ⊤ = “all ones” and
bottom element ⊥ = “all minus ones”. The height of
the partial order, h, is of course |V |.

So we are done!


