
More about CFTP
Application on k-colouring

Yanheng Wang

In the lecture, we studied monotone CFTP. That
is, the state space X is equipped with a partial
order ≤, and the transition function f preserves
the order.

Monotonicity is nice because we don’t have to
run |X | chains in parallel; instead, we only run
two of them – the top chain and the bottom
chain. If they meet, then we safely assert that all
the chains meet (i.e. the space collapse to a
singleton).

This could be exponential!

However, in situations such as k-colouring problem, there’s
no apparent partial order and compatible transition function.

T := −1/2
repeat

T := 2T
for t := T + 1 . . . 0 do

Choose i.i.d St ∼ S if haven’t chosen yet
Generate ft := f(·, St)

until the function g0T collapses the space X ;
return the image of g0T

Without the help of monotonicity, we must find some
alternative way to tell whether the space collapses. (Running
all the chains in parallel is clearly prohibitively expensive.)

Non-trivial!

For the k-colouring problem, an elaborate
construction is given by Bhandari and
Chakraborty this year. We shall describe their
idea in the rest of the slide.

Main result. Given a graph G with k > 3∆, we
can construct a perfect uniform sampler that
produces a proper k-colouring of G. Moreover,
the sampler runs efficiently (in the sense of
expectation).

The construction of the transition function f lies central. f is
a complicated function that contains many steps. (It’s so
complicated that we’d better describe it in the language of
algorithm.)

Function f(x, s)
L[v] := {1, 2, . . . , k} for all v ∈ V
foreach v ∈ V do

Select a set of colours C smartly
foreach u ∈ Γ(v) do

Compress(u, C, s)
Contract(v, s)

Decode a sequence of vertices, R, from s
foreach v ∈ R do

Contract(v, s)
return x

Notation. We denote the neighbourhood of v as Γ(v).
Notation. Denote Ψ(v) := {1, 2, . . . , k} − x(Γ(v)). In other
words, Ψ(v) is the set of allowable colours at v in colouring x.

They will use or
update x and L!

Function f(x, s)
L[v] := {1, 2, . . . , k} for all v ∈ V
foreach v ∈ V do

Select a set of colours C smartly
foreach u ∈ Γ(v) do

Compress(u, C, s)
Contract(v, s)

Decode a sequence of vertices, R, from s
foreach v ∈ R do

Contract(v, s)
return x

The Rationale Behind f

The array L is an important tracker that
changes as the program executes. L[v]
aggregates all possible values of x(v) at the
moment, when input x ranges over X .

It loops over v ∈ V one by one, calls
Contract to modify x(v) geniously so that
|L[v]| is contracted down to 2. However,
before we call it, we must spruce up
Γ(v) = {u1, . . . , up} using the inner loop.
Compress overlaps L[u1], . . . , L[up] so that
they share a core C of size ∆. (Similar to a
sunflower in combinatorics.) Specifically,
|L[ui]− C| ≤ 1.

The final part continues modifying x so that
|L[v]| = 1 for all v with high probability. Note
that if we end up ∀v : |L[v]| = 1, then we are
safe to say that f(·, s) collapses the space X to
a singleton!

Let f and S induce P .
They are designed to
make µP = µ for uniform
distribution µ.

Since the random source s encodes tons of information we
need (including those used in subroutines), it’s tedious to
write it formally.

We would rather adopt the casual style: When we discuss the
subroutines, we use descriptions such as “generate a random
vertex” and “select a random colour”. You should keep in
mind (and verify) that such randomness are in fact provided
by s, and shall not depend on x.

Subroutine Compress

Shuffle C randomly
Select a random colour c ̸∈ C
Pick at random τ ∈ [0, 1]
if c ∈ Ψ(u) and τ ≤ p := k−∆

|Ψ(u)| then
x(u) := c

else
x(u) := the first feasible colour in C

L[u] := C ∪ {c}

Recall that our goal here is to “concentrate” L[u]: We shall
make L[u] = C ∪ {c} when Compress finishes. In other
words, at the moment Compress finishes, x(u) always take
values in C ∪ {c}, regardless of what the input x looks like.

The extra colour compensates for the
absence of Ψ(u)− C. It’s essential to
mimic the Glauber dynamics.

x(u) ∈ L[u] = C ∪ {c} indeed, regardless of the input x.
It implements Glauber dynamics at u. (See next page.)

When Compress finishes:

It always succeeds, assuming |C| = ∆.
If c ̸∈ Ψ(u) then ∃w ∈ Γ(u) such that
x(w) ̸∈ C, thus at most ∆− 1 vertices
in Γ(u) use the colours in C.
If τ > p then k −∆ < |Ψ(u)| since
τ ≤ 1. This implies |x(Γ(u))| < ∆.

Q: Why should we care about Glauber dynamics here?
A: In a word, it helps us establish µP = µ. If we can show
that Compress implements Glauber dynamics at vertex u,
then the uniform distribution µ must be a fixed point of
Compress. (Exercise: Figure out why.)

Now we show that Compress implements Glauber dynamics
at u. For each colour c0 ∈ Ψ(u),
c0 ̸∈ C

c0 ∈ C

Pr[x(u) = c0] = p · 1
k−|C| =

1
|Ψ(u)|

Notice that
∑

i∈Ψ(u) Pr[x(u) = i] = 1 since we
never produce illegal colourings. Excluding the
probability of previous case, we have total mass
|Ψ(u)∩C|
|Ψ(u)| on space Ψ(u) ∩ C. But since we chose the

first feasible colour from C, which was shuffled
randomly, the mass must be uniformly distributed
on Ψ(u) ∩ C. Therefore, Pr[x(u) = c0] =

1
|Ψ(u)| .

Subroutine Contract
Our goal here is even more radical: Contracting |L[v]| to 2.
Furthermore, with some good chance we could actually
decrease the size to 1!

Remark. For Contract to be effective, we must ensure
that |B[v]| ≤ k −∆ in advance. That’s why we must spruce
the neighbourhood up before we apply Contract. After the
cleansing, we have |L[u]− C| ≤ 1 for all u ∈ Γ(v), hence
|B[v]| ≤ |C|+∆ = 2∆ < k −∆.

More notations.
B[v] :=

∪
u∈Γ(v)

L[u] A[v] :=
∪

u∈Γ(v)
|L[u]|=1

L[u]

These two quantities vary as f executes. At any instant,
A[v] ⊆ x(Γ(v)) ⊆ B[v]. (Exercise: Prove it.)

Select a random colour c1 ∈ {1, 2, . . . , k} −B[v]
Select a random colour c2 ∈ B[v]−A[v]
Pick at random τ ∈ [0, 1]

if c2 ∈ Ψ(v) and τ ≤ p := |B[v]−A[v]|
|Ψ(v)| then

x(v) := c2

else
x(v) := c1

if τ ≤ p′ := |B[v]−A[v]|
k−∆

then
L[v] := {c1, c2}

else
L[v] := {c1}

Always a safe choice

Compensate for vacuum area

This part looks weired. Why don’t we update
L above? Our purpose is to separate L and x
– the update of L never depends on the
specific value of x. (See the final page for
reason.) Beware that Ψ does depend on x,
thus we could only estimate the threshold
without the knowledge of x.

By similar analysis to the subroutine Compress, we
establish the following properties when Contract finishes.
x(v) ∈ L[v] indeed, regardless of the input x.
It implements Glauber dynamics at v.

The Art of Choosing C

At this point, we revisit the function f . There’s a subtlety
that we purposely ignored. The goal of the outer loop is to
contract |L[v]| down to 2 for all v, and the prerequisite is to
spruce up the neighbourhood of v. However, we may
unconsciously destroy the previous work (i.e. bringing |L[v′]|
back to ∆+ 1) during the spruce up!

Function f(x, s)
L[v] := {1, 2, . . . , k} for all v ∈ V
foreach v ∈ V do

Select a set of colours C smartly
foreach u ∈ Γ(v) do

Compress(u, C, s)
Contract(v, s)

Decode a sequence of vertices, R, from s
foreach v ∈ R do

Contract(v, s)
return x

Function f(x, s)
L[v] := {1, 2, . . . , k} for all v ∈ V
foreach v ∈ V do

Select a set of colours C smartly
foreach u ∈ Γ(v) and u > v do

Compress(u, C, s)
Contract(v, s)

Decode a sequence of vertices, R, from s
foreach v ∈ R do

Contract(v, s)
return x

Here’s a quick fix: If the vertex u has been contracted before
(i.e. u < v), then we simply skip it.

But the story isn’t over. So long as we skip it, how can we
ensure that |L[u]− C| ≤ 1?

It turns out that we can accomplish this by choosing a C that
intersects with L[u] for all u ∈ Γ(v) ∧ u < v. Expressed in
algorithm:

C := ∅
foreach u ∈ Γ(v) and u < v do

Pick arbitrary a ∈ L[u]
C := C ∪ {a}

Such u must have been
contracted in previous
rounds, thus |L[u]| ≤ 2.

Obviously, |C| ≤ ∆. If the size is smaller than ∆, then we
append some arbitrary colours to make it ∆.

Now comes the exciting part. We spot an unusual property:
The tracker array L in function f is driven by randomness s
only! In other words, even if we don’t know the exact input
x, we could still run f virtually and obtain the correct value
of L. (Recall the definition of L is independent of specific x.)

This is exactly what we want: We could infer the collapse of
space without running |X | chains in parallel; instead, we just
run f virtually (on arbitrary input x) and see what’s the
value L. If we are lucky that |L[v]| = 1 for all v, then we
know that the space indeed collapsed!

Coup de Grâce

We supplement the running time analysis here. In f , we take
R to be a random sequence of vertices of length 2 k−∆

k−3∆
n lnn

(allowing repetitions). The meaning of this number will be
clear soon.

Appendix: Running Time

Theorem. By the time f returns, Pr[∀v : |L[v]| = 1] ≥ 1/2.
Corollary. The algorithm is only expected to call f twice,
before it finds the space is collapsed. But we know that each
run of f takes polynomial time only, thus the algorithm is
expected to terminate in polynomial time.
Remark. Intuitively, the theorem says that if we repeat
Contract on random vertices for many times, then with
high probability we are able to “drift” |L[v]| from 2 to 1 for
all v.

The proof of the theorem relies on the following lemma,
whose proof is omitted here.
Lemma. Consider an arbitrary random walk {It} on
{0, 1, . . . , n} satisfying ∀t : |It+1 − It| ≤ 1 with absorbing
state n. If E[It+1 − It | It = i] ≥ κ(i) > 0 for all t, then

n−1∑
i=0

E[Hi] ≤
n−1∑
i=0

1

κ(i)

where Hi := the number of times the walk hits state i.

Idea. In our context, define G := {v ∈ V | |L[v]| = 1} that
changes all the time as f proceeds. For clarity, we put a
subscript and write it Gt. Denote It := |Gt|. Clearly, {It} is
a random walk on {0, 1, . . . , n}, and n is the absorbing state
(Exercise). Our target is to drift It to n. We shall use the
above lemma to show that we could reach our goal efficiently.

“Good”

Lemma. Consider an arbitrary random walk {It} on
{0, 1, . . . , n} satisfying ∀t : |It+1 − It| ≤ 1 with absorbing
state n. If E[It+1 − It | It = i] ≥ κ(i) > 0 for all t, then

n−1∑
i=0

E[Hi] ≤
n−1∑
i=0

1

κ(i)

where Hi := the number of times the walk hits state i.

Proof of the theorem.

E[It+1 − It | It = i] =
∑
v ̸∈Gt

1

n

(
1− |B[v]−A[v]|

k −∆

)
−
∑
v∈Gt

1

n

|B[v]−A[v]|
k −∆

=
1

n

(
(n− i)−

∑
v∈V

|B[v]−A[v]|
k −∆

)

≥ 1

n

(
(n− i)− 2(n− i)∆

k −∆

)
=

n− i

n
· k − 3∆

k −∆
=: κ(i)

Thus
∑n−1

i=0 E[Hi] ≤
∑n−1

i=0
1

κ(i)
≤ k−∆

k−3∆
n lnn.

Probability that we
have a new member
in Gt+1.

Probability that
we lose a member
in Gt+1.

Note |B[v]−A[v]| ≤ 2|Γ(v) ∩Gt| for all
v. Hence,

∑
|B[v]−A[v]| ≤ 2(n− i)∆

since every w ∈ Gt is counted for at
most ∆ times in the summation.

Lemma. Consider an arbitrary random walk {It} on
{0, 1, . . . , n} satisfying ∀t : |It+1 − It| ≤ 1 with absorbing
state n. If E[It+1 − It | It = i] ≥ κ(i) > 0 for all t, then

n−1∑
i=0

E[Hi] ≤
n−1∑
i=0

1

κ(i)

where Hi := the number of times the walk hits state i.

Recall that our goal is hitting the number n. Put it in another
way, we don’t want Hn = 0. Well, how often could Hn = 0
happen? It turns out that Hn = 0 ⇐⇒

∑n−1
i=0 Hi ≥ |R|,

where |R| is the length of our random sequence. Hence,

Pr[Hn = 0] = Pr

[
n−1∑
i=0

Hi ≥ |R|

]

≤
E
[∑n−1

i=0 Hi

]
|R| ≤ 1

2

by Markov inequality.

