
A Tutorial in Barvinok’s Method

Yanheng Wang

1 Barvinok’s Method for Approximating Polynomials

Let p(z) : C → C be a polynomial of degree n. We would like to compute p(1) approxi-
mately. A classical tool from analysis is Taylor expansion, but apparently there’s no point
to “approximate” a polynomial by its Taylor expansion (which is a polynomial again).
However, Barvinok observed that we could expand `(z) := ln p(z) instead of p(z). The
logarithm intuitively diffuses the coefficients of the original polynomial. Once we obtain a
good approximation to `(1), raising it to the exponent would give us a good approximation
to p(1). Therefore, in the following we concentrate in approximating `(1).

1.1 A Taylor Expansion Approximation

Suppose the complex roots of p(z) are r1, r2, . . . , rn. Then we may write

p(z) = a0

n∏
i=1

(z − ri)

and

`(z) = ln a0 +
n∑
i=1

ln(z − ri).

Differentiating k times and taking z = 0 gives

`(k)(0) = −(k − 1)!
n∑
i=1

r−ki . (1)

Therefore, the Taylor series of `(z) at z = 0 writes

`(z) = ln a0 +
∞∑
k=1

`(k)(0)

k!
zk

= ln a0 −
∞∑
k=1

n∑
i=1

1

krki
zk.

Now we truncate the series by discarding k > m:

ˆ̀(z) := ln a0 −
m∑
k=1

n∑
i=1

1

krki
zk.

1

Then the error between ˆ̀(1) and `(1) is bounded by

|`(1)− ˆ̀(1)| ≤
∞∑

k=m+1

n∑
i=1

1

|k| · |ri|k
≤ 1

m+ 1

∞∑
k=m+1

n∑
i=1

1

|ri|k
.

It comes clear that the error is small provided the roots ri all stay away from the unit disc
on complex plane. More specifically, suppose |r1|, |r2|, . . . , |rn| ≥ β > 1, then

|`(1)− ˆ̀(1)| ≤ n

m+ 1

∞∑
k=m+1

1

βk
=

n

(m+ 1)(β − 1)βm

and thus ˆ̀(1) is a good approximation to `(1). We summarise the discussion into the
following lemma.

Lemma 1. Suppose all roots of a complex polynomial p(z) stay away from the disc
{z ∈ C : |z| ≤ β} where β > 1. Denote `(z) := ln p(z) and take ˆ̀(z) to be its truncated
Taylor expansion at 0 of order m. Then |`(1)− ˆ̀(1)| ≤ ε when we choose m = O(log(n/ε)).

1.2 A Quasi-Polynomial Time Algorithm

To use the previous lemma algorithmically, we must show that l̂(1) can be computed easily.
Note that we do not assume knowledge about r1, r2, . . . , rn.

Write p(z) =
∑n

i=0 aiz
i. Since by definition `(z) = ln p(z), we have `′(z) = p′(z)/p(z)

or equivalently p′(z) = p(z)`′(z). Differentiating k − 1 times,

p(k)(z) =

k−1∑
i=0

(
k − 1

i

)
p(i)(z)`(k−i)(z).

In paticular, taking z = 0 we have

k! ak =

k−1∑
i=0

(
k − 1

i

)
i! ai `

(k−i)(0). (2)

If we know the values a0, a1, . . . , am, then this is a triangular linear system, from which
we could solve `(k)(0) for k = 1, 2, . . . ,m. The computation of ˆ̀(1) then follows.

Since we took m = O(log(n/ε)) in Lemma 1, we may use a brute-force approach
to compute a0, a1, . . . , am. For instance, let p(z) be the independence polynomial, i.e.
ak being the count of independent sets of size k in graph G. To compute ak, we may
enumerate all k-subsets of V (G) and count the number of independent ones. This yields
an nO(log(n/ε)) (i.e. quasi-polynomial time) algorithm.

2 Proving Zero-Free Property

This section develops basic tools to prove the zero-free property required by Lemma 1. It
can be skipped safely.

2

Definition 1. Let p(z) : Cn → C be a multivariate polynomial and D := {z ∈ C : |z| ≤ 1}
be the unit disc on complex plane. We say p(z) is stable if p(z) 6= 0 for all z ∈ Dn.

Definition 2. Write zS :=
∏
i∈S zi. Let p(z) :=

∑
S⊆[n] aSzS and q(z) :=

∑
S⊆[n] bSzS be

two n-variate, multi-affine polynomials. The Schur product p ∗ q is defined by

p ∗ q :=
∑
S⊆[n]

aSbSzS .

Lemma 2. If the bivariate polynomial r(x, y) := axy + bx + cy + d is stable, then its
contraction r−(z) := az + d is also stable.

Proof. If a = 0 then d 6= 0, and r−(z) = d is stable. If a 6= 0, the only root of r−(z) is
−d/a, so it suffices to prove |d| > |a|. By symmetry we assume |c| ≥ |b|. Since r(x, y) is
stable, we have |bx+d| > |ax+c| for all x ∈ D. Let’s take x0 : |x0| = 1, |ax0 +c| = |a|+ |c|.
Then |b|+ |d| ≥ |bx0 + d| > |a|+ |c| and thus |d| − |a| > |c| − |b| ≥ 0.

Lemma 3. Let p and q be two n-variate, multi-affine polynomials. If p and q are stable,
then both pq and p ∗ q are stable.

Proof. It’s trivial that pq is stable. Now we prove that p ∗ q is stable by induction on n.
If n = 1, then p ∗ q = a∅b∅+ a1b1z1 whose root ρ satisfies |ρ| = |a∅|/|a1| · |b∅|/|b1| > 1 since
p and q are stable. Next we prove the case n+ 1, assuming the lemma holds for ≤ n. We
may write

p(z) =
∑

S⊆[n−1]

zS
(
znaS∪{n} + aS

)
, q(z) =

∑
S⊆[n−1]

zS
(
znbS∪{n} + bS

)
.

We define p(z | zn = x) to be p(z) with zn fixed to a constant x ∈ D. Similarly define
q(z | zn = y). By induction hypothesis, their Schur product∑

S⊆[n−1]

zS
(
aS∪{n}bS∪{n} · xy + aS∪{n}bS · x+ aSbS∪{n} · y + aSbS

)
is stable. Since x, y ∈ D are chosen arbitrarily, we could raise them back to variables.
At the same time, we fix the remaining variables z1, . . . , zn−1 to constants. So the above
quantity can be viewed as a stable bivariate polynomial r(x, y) = axy+ bx+ cy+ d where
the constants a, b, c, d are easy to write but too long to place. By Lemma 2, its contraction
r−(z) := az + d is stable as well. But r−(zn) is exactly∑

S⊆[n−1]

zS
(
aS∪{n}bS∪{n} · zn + aSbS

)
=
∑
S⊆[n]

aSbSzS = p ∗ q

which completes the induction.

3 Faster Algorithm via Induced Subgraph Counts

In this section we introduce a framework by Patel and Regts that speeds up the compu-
tation of the quasi-polynomial time algorithm.

3

3.1 Preliminaries

We write G for the class of all graphs, and Gs for the class of graphs with at most s vertices.
We denote by C the class of all connected graphs. We will assume throughout that the
maximum degree, ∆, of graph G is a bounded constant.

If H,G ∈ G, we denote by ind(H,G) := |{S ⊆ V (G) : G[S] ∼= H}|, that is the
number of induced subgraphs of G that are isomorphic to H. The following figure gives
an example. H appears three times in G as a subgraph, but only the green appearance
counts, so ind(H,G) = 1 in this example.

GH

We call a graph invariant f : G → C multiplicative if f(∅) = 1 and f(G∪̇G′) =
f(G)f(G′). Similarly, we call it additive if f(G∪̇G′) = f(G) + f(G′).

We next define a broad class of graph polynomials that will fit into our framework.

Definition 3. The class BIGCP (bounded induced graph counting polynomial) consists
of all multiplicative graph polynomials p(z) =

∑n
i=0 aiz

i such that

(1) a0 = 1 and the other coefficients ai could be written in the form

ai =
∑
H∈Gαi

λi(H) · ind(H,G) (3)

where α ∈ N and λi(H) ∈ R are constants independent of G;

(2) λi(H) can be computed in polynomial time of |H|.

For instance, the independence polynomial is a BIGCP since ai = ind(Ki, G); we may
take α := 1 and λi(H) := 1[H ∼= Ki].

The definitions actually bear a simple intuition. Many graph-theoretic objects of inter-
est are vertex/edge subsets that satisfy certain constraints. For instance, an independent
set is a vertex subset in which no vertices are adjacent; a matching is an edge subset in
which no edges are incident. To treat them uniformly we may encode them by induced
subgraphs. For example, a matching M is encoded by an induced subgraph (V (M),M),
which is merely a wrapping of the object. (We use induced subgraphs rather than arbi-
trary subgraphs because they encode complete information among the region they span;
otherwise it’s ambiguous to decode a subgraph.) Then the associated graph polynomial
writes p(z) :=

∑n
i=0 aiz

i where

ai :=
∑
H⊆G

induced

λi(H).

But typically λ(H) = λ(H ′) provided H ∼= H ′, i.e. the location of the object doesn’t
matter. So we could aggregate all isomorphic H’s via ind(H,G), which gives us the form
in Equation (3). It essentially extracts the structure H and neglects its location.

4

3.2 Properties of ind(H,G)

The following property is very useful since it boils a product down to linear combination.
As we will see later, repeated application of the lemma kills any higher-order terms that
are difficult to manipulate.

Lemma 4. Suppose H1 ∈ Gr, H2 ∈ Gs (possibly sharing vertices and edges). Then

ind(H1, G) · ind(H2, G) =
∑

H∈Gr+s

c(H1, H2;H) · ind(H,G)

where c(H1, H2;H) := |{(S1, S2) : S1 ∪ S2 = V (H), H[S1] ∼= H1, H[S2] ∼= H2}|.
Proof. The LHS counts the size of the set {(S1, S2) : G[S1] ∼= H1, G[S2] ∼= H2}. We could
imagine moving two templates, H1 and H2, around the graph G and count every time
when both of them found a match.

The RHS does the same thing in two stages: (i) it enumerates H as a candidate
structure for G[S1]∪G[S2]; (ii) it decomposes H into S1, S2 and count. The c(H1, H2;H)
takes care of possible decompositions, while the ind(H,G) accounts for possible locations
of the bulk G[S1] ∪G[S2].

We next show another crucial property of induced subgraph counts. It’s the source
that we gain speedup over the original algorithm: a brute-force enumeration of connected
graphs is much more efficient, as such graphs “grows” locally.

Lemma 5. Let f(G) :=
∑

H∈G λ(H) · ind(H,G) be a graph invariant. Then f(G) is
additive if and only if λ(H) = 0 for all disconnected H.

Proof. (⇐) For disjoint graphs G, G′ and connected graph H, we have ind(H,G∪̇G′) =
ind(H,G) + ind(H,G′) since H cannot span two disjoint parts. Hence f(G∪̇G′) = f(G) +
f(G′).

(⇒) We assume without loss of generality that λ(H) = 0 for all H ∈ C. (If this is
not the case, we subtract from f(G) another additive invariant δ(G) :=

∑
H∈C λ(H) ·

ind(H,G).) Now we proceed by induction on the size of H. Suppose λ(H) = 0 for all H :
|H| ≤ s. Consider a disconnected graph H : |H| = s+ 1. We partition it into two smaller
disconnected parts, say H1 and H2. By additivity, f(H) = f(H1) + f(H2) = 0 + 0 = 0
since ind(H,H1) = ind(H,H2) = 0. On the other hand, f(H) = λ(H)ind(H,H) = λ(H).
Hence λ(H) = 0.

The final lemma would show the concrete advantage of a connected graph.

Lemma 6. If H is a connected graph of size s, then we may enumerate (possibly with
repetitions) all S ⊆ V (G) : G[S] ∼= H in O(n∆s) time.

Proof. Let v1, v2, . . . , vs be a breadth-first order of H. We try to enumerate corresponding
vertices w1, w2, . . . , ws from G to make vi 7→ wi an isomorphism of H → G. Initially
we choose a candidate w1 ∈ G; there are n choices. Now suppose we have selected
w1, . . . , wi and are ready to pick wi+1. Let j ≤ i : vj ∈ NH(vi+1); by connectivity of
H and the definition of breadth-first order, such j must exist. We then propose wi+1 to
be a neighbour of wj ; there are ≤ ∆ choices. When we finish filling up ws, we print the
sequence if vi 7→ wi is indeed an isomorphism. The overall time complexity is O(n∆s).

5

Corollary 7. If H is a connected graph of size s, then we may compute ind(H,G) in
O((n∆s)2) time. In particular, we could determine if H ∼= H ′ (i.e. if |H| = |H ′| ∧
ind(H,H ′) > 0) in O(n∆s).

3.3 Approximating BIGCP by Dynamic Programming

Let p(z) :=
∑n

i=0 aiz
i be a BIGCP with roots r1, r2, . . . , rn. We define the inverse power

sum σk :=
∑n

i=1 r
−k
i . Since p(z) is multiplicative, we see that σk is additive for all k ∈ N.

Remark. In fact, we could proceed our following exposition without introducing {σk}nk=1,
since `(k)(0) is a constant multiple of σk. The latter merely lightens our notation.

We start by relating {ai}ni=0 and {σk}nk=1 (often called Newton Formulas). Plug Equa-
tion (1) into Equation (2) and simplify, we would get a recursive formula

σk = −kak −
k−1∑
i=1

aiσk−i. (4)

At first glance, the recursion is non-linear due to the product terms aiσk−i. But
actually we could spread the product with the help of Lemma 4. It’s easy to prove by
induction on k that

σk =
∑

H∈Gαk

γk(H) · ind(H,G).

for some constants γk(H) independent of G. Then by Lemma 5, γk(H) = 0 whenever H
is disconnected. Therefore, the above equation simplifies to

σk =
∑

H∈Cαk

γk(H) · ind(H,G). (5)

where Cαk denotes the class of connected induced subgraphs in G of size at most αk.
In the rest of this section, we show an algorithm that computes γk(H) via dynamic

programming. Once we have them, we could compute σk and `(k)(0) = −(k − 1)!σk
accordingly.

Remark. It seems intriguing to avoid γ’s altogether and compute σk directly:

σk = −k
∑

H∈Gαk

λ(H, k)ind(H,G)−
k−1∑
i=1

∑
H∈Gαi

λ(H, i)ind(H,G) · σk−i

= −k
∑

H∈Cαk

λ(H, k)ind(H,G)−
k−1∑
i=1

∑
H∈Cαi

λ(H, i)ind(H,G) · σk−i.

But the second line is problematic since σk−i depends on the graph G and should not be
treated as a constant. So we could not apply Lemma 5 to simplify the summation to Cαk.
On the other hand, the first line is correct but inefficient: there are about 2(αm)2 = nΘ(logn)

possible H ∈ Gαk, which does not beat our old algorithm.

6

We now show how to compute γk(H). Plugging the “explicit formulas” (3)(5) into
RHS of the recursion (4), we get

σk = −k
∑

H∈Gαk

λk(H)ind(H,G)

−
k−1∑
i=1

∑
A∈Gαi

∑
B∈Cα(k−i)

λi(A)γk−i(B) ind(A,G)ind(B,G)

= −
∑

H∈Gαk

kλk(H) +
k−1∑
i=1

∑
A∈Gαi

∑
B∈Cα(k−i)

λi(A) γk−i(B) c(A,B;H)

 ind(H,G)

where the last line follows from Lemma 4 and exchanging the summations. Compariing
it with Equation (5), for any k ∈ [m] and H ∈ Cαk,

γk(H) = kλk(H) +
k−1∑
i=1

∑
A∈Gαi

∑
B∈Cα(k−i)

λi(A) γk−i(B) c(A,B;H).

This equation naturally suggests a dynamic programming algorithm that works from
k = 1 to k = m and keeps the entries in a table. It remains to show that the summation
can be done fast. In fact, the inner summation is mostly redundant. By definition,

c(A,B;H) =
∑

S∪T=V (H)

1{H[S] ∼= A} · 1{H[T] ∼= B}.

So we could rewrite the equation as

γk(H) = kλk(H) +
k−1∑
i=1

∑
S∪T=V (H)
H[S]∈Gαi

H[T]∈Cα(k−i)

λi(H[S]) γk−i(H[T]) (6)

which saves many redundant enumerations of A and B.
Now we note that |H| ≤ αk ≤ αm = O(log(n/ε)). Since our inner summation requires

S∪T = V (H), we have at most three possibilities for each v ∈ V (H): v ∈ S \T ; v ∈ T \S;
or v ∈ S ∩ T . So we have 3O(log(n/ε)) = nO(1) possibilities for S, T in total.

After finishing all γk(H), we use Equation (5) to compute the σk’s. There are O(∆αk)
many H ∈ Cαk and we could enumerate them in polynomial time. (On the contrary, the
number would explode if we drop the connectivity contraint.)

There is a technical detail left: the dynamic programming table is indexed by k and
H. We need an efficient way to look for the entry γk−i(H[T]). Luckily, the summation
is over all H[T] ∈ Cα(k−i), so we could simply search over polynomially-many graphs and
use Corollary 7 to test for isomorphism.

3.4 Generalisation

The framework can be extended naturally to other contexts where an induced subgraph
does not capture the full structure. Refer to Patel and Regts’ paper and the work by Liu,
Sinclair and Srivastava for discussion.

7

