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A graph can be represented algebraically by an adjacency matrix, an incidence matrix, or perhaps
many other forms. Given a matrix representation, we may compute efficiently many algebraic
quantities such as rank, determinant, eigenvalues and eigenvectors, and so on. But what for? Can
we really retrieve combinatorial information from these quantities?

It turns out that the spectrum (i.e. the set of all eigenvalues) of the adjacency matrix reveals plenty
of information (but not all, of course). As we will see, it can predict if a graph is bipartite, bound
the maximum degree or even the independence number of a graph!

1 Basic Properties of Spectrum
Let G=([n]; E) be a graph on n vertices. Its adjacency matrix, denoted A :=A(G), is defined by
Aij := 1f(i; j)2Eg. In other words, row i encodes which vertices are adjaecnt to vertex i. It is
important to remember that the adjacency matrix representation does depend on the labelling: two
isomorphic copies of G can have different-looking adjacency matrices (though after row/column
swaps they can be made equal.)

Since A is a real symmetric matrix, it has a complete spectrum. That is, it has n independent
eigenvectors v1; : : : ;vn with eigenvalues �1> � � �>�n. Moreover, the eigenvectors can be assumed
orthonormal if we want.

Note that tr(A)=0 since the diagonal of A is all-zero. Hence
P

i=1
n �i=0, meaning that �1>0>�n

unless the graph is empty.

Let us compute the spectra of two example graphs:

Example. (complete graph)

A(Kn)=J ¡ I. Since I accepts any vector as its eigenvector, it suffices to search for eigenvectors of
J . Before any computation, we note rank(J)=1, so it has only one non-zero eigenvalue. Without
much effort we figure out 1= (1; : : : ; 1)T as a valid choice, with eigenvalue n. Therefore J has
spectrum n; 0; : : : ; 0; consequently J ¡ I has spectrum n¡ 1;¡1; : : : ;¡1.

Example. (complete bipartite graph)

A(Km;n)=
 
Om�m Jm�n
Jn�m On�n

!
. Again notice that rank(A)= 2, so there are only two non-zero eigen-

values, i.e. �1> (0 = �2= � � � = �n¡1)>�n. Secondly we know �1+ �n= 0. So we need only one
additional equation to solve them. Observe thatA2=

�
nJ O
O mJ

�
, so tr(A2)=2mn=�12+�n2 . Solving

the equations we get �1= 2mn
p

and �n=¡ 2mn
p

.

Lemma 1.

� �(G)>�1> j�ij for all i2 [n]. Moreover, �(G)=�1 iff G is �-regular.

� Assume G is connected. Then every coordinate of v1 has the same sign and is non-zero. Also
�1>�2.

� Assume G is connected. Then G is bipartite () �1=¡�n () 8i2 [n]; �i=¡�n¡i+1.

To establish this sort of results, we usually look at the quadratic form

x 7! hAx;xi
hx;xi = xTAx

kxk2 :
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The intuition is explained below. We regard A as a linear transformation, so the eigenvectors are
exactly those who do not change direction after the transformation. Among these, v1 is the one
that has largest �boost effect� and vn is the one that has strongest �negative boost effect�.

We decompose a general vector x into x=
P

i=1
n �ivi, then Ax is �the average effect� of tranform-

ation A applied on all eigenvectors, weighted by the coefficients �i's. If x has �more ingredient�
from vi (i.e. �i is large) then the result is more aligned to vi.

The quadatic form hAx;xi
hx;xi measures the proximity of x before and after the transformation (the

denominator is just a normalisation that removes the metric of x). So quite naturally, it will return
a large positive value if x�v1, and quite the opposite if x�vn. A formal proof is also easy. We
have hx;xi=

P
i=1
n �i

2 since vi's are orthonormal basis. We can also compute hAx;xi=
P

i=1
n �i�i

2

easily. Hence

hAvn;vni
hvn;vni

=�n6
hAx;xi
hx;xi 6�1=

hAv1;v1i
hv1;v1i

:

So the quadratic form is maximised at v1 and minimised at vn, as expected. It also suggests a
variational characterization for �1 and �n:

�1= max
x2Rn

hAx;xi
hx;xi ; �n= min

x2Rn

hAx;xi
hx;xi :

Can we express the other eigenvalues in a similar way? The answer is yes, and the form turns out
to be neat:

Lemma 2. Suppose a real symmetric matrix A has eigenvalues �1> � � �>�n. Then

�i= max
U�Rn

dimU=i

min
x2U

hAx;xi
hx;xi = min

U�Rn

dimU=n¡i+1

max
x2U

hAx;xi
hx;xi :

Proof. We prove the first equation only; the second one is similar.

(>) We intend to show: for all U �Rn :dimU = i, there exists x2U such that �i> hAx;xi
hx;xi . Let us

pause for a minute and consider how to construct such an x. If it is made of ingredients vi; : : : ;vn
only, then we can guarantee that the quadratic form has smaller value. So we naturally construct
a apace V := span(vi; : : : ; vn). Note that dimV =n¡ i+1, hence dim(U \V )> 1. So there indeed
exists x2U \V , which by definition satisfies

hAx;xi
hx;xi =

P
j=i
n

�j�j
2P

j=i
n �j

2 6�i:

(6) We intend to show: there exists U �Rn :dimU = i such that �i6 hAx;xi
hx;xi for all x2U . Now it

should be clear that U := span(v1; : : : ; vi) does the job. �

After grabbing the intuition, we return to prove Lemma 1.

Proof of Lemma 1.

� Suppose v1=(v11;:::; v1n)T where v1i is the largest coordinate. Assume without loss of generality
that v1i> 0. Then

�1 v1i=(Av1)i=
X
j=1

n

aij v1j6 v1i
X
j=1

n

aij6 v1i�;
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that is �16�. It becomes an equality iff v11= ���=v1n. This happens iff the graph is �-regular.
(Exercise)

To prove the other inequality, we use the quadratic form and triangle inequality:

j�ij= jhAvi;viij6 hAjvij; jviji6�1:

� Define a unit vector ' := jv1j and compute hA'; 'i > jhAv1; v1ij = �1. If v1 does contain
contradicting signs, then the > will become >, which is impossible.

Now we could safely assume v1>0. We shall show v1i>0 for all i2 [n]. Suppose to the contrary
that v1i=0 for some i2 [n]. Then

0= (Av1)i=
X
j=1

n

aij v1j=
X
j�i

v1j:

Since v1j > 0, we have no choice but 8j � i; v1j = 0. This argument then propogates to all
vertices in the graph due to connectivity. Hence vi=0, a contradiction.

Finally, we prove �1>�2 by contradiction. Suppose �1= �2, then any linear combination of
v1 and v2 is also an eigenvector of �1. So we could take for instance v1¡ v1i

v2i
v2 where v2i=/ 0.

This would zero the coordinate i, contradicting the previous claim.

� ()) Let us observe the pattern of the adjacency matrix A of a bipartite graph. Since relabelling
the vertices shall not change the spectrum, we may assume without loss of generality that

A=

 
Om�m Bm�n

Bn�m
T On�n

!
:

We claim the following: If x=(x+;x¡) is an eigenvector of A with eigenvalue �, then y=(y+;
y¡) := (x+;¡x¡) is an eigenvector of A with eigenvalue ¡�.

The proof is just by definition. Since Ax=�x, we know Bx¡=�x+ and BTx+=�x¡. Hence

Ay=

 
By¡

BTy+

!
=

 
¡Bx¡

BTx+

!
=

 
¡�x+
�x¡

!
=¡�y:

This claim implies that the spectrum of a bipartite graph is symmetric with respect to 0.

(() Consider the matrix Ak for odd number k. The diagonal element (Ak)i;i counts the number
of walks of length k that both starts and ends at i. Then tr(Ak)> 0 iff there is a cycle Ck in
the graph.

Since the spectrum of A is symmetric, the spectrum of Ak is also symmetric for any odd
number k. Therefore, tr(Ak)=

P
i=1
n �i(Ak)=0. So the graph doesn't contain odd cycle, hence

bipartite. �

Lemma 3. diam(G) :=maxu v d(u; v) is less than the number of distinct eigenvalues of A(G).

Proof. Let �1;:::; �d be distinct eigenvalues of A(G). To facilitate our proof, we define a polynomial
m(x) :=

Q
i=1
d (x¡�i). It is essentially the characteristic polynomial of A(G) without multiplicities.

We claim that m(A)=O.

To see the claim, we diagonalise A=QT�Q where Q is orthonormal and �=diag(�1; : : : ; �n) with
f�1; : : : ; �ng= f�1; : : : ; �dg. Observe that m(�) =

Q
i=1
d (�¡ �iI) =O. (The product of diagonal

matrices is the same as elementwise product!) Therefore m(A)=m(QT�Q)=QTm(�)Q=O.
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By moving terms around, the claim implies Ad=
P

i=1
d¡1 ciA

i for some coefficients ci's. Hence, for

any t> d, we may prove by induction that At=
P

i=1
d¡1

diA
i for some coefficients di's.

Now we assume, for the sake of contradiction, that diam(G)>d. Then there exist connected vertices
u; v with d(u; v)=diam(G)>d. So At(u; v)=0 for all t6 d¡1, which implies that At(u; v)=0 for
all t2N. This contradicts with connectivity between u and v. �

2 Relating Spectrums of Two Graphs

Although efficient algorithms can compute the spectrum of any specific adjacency matrix, it is
often the case that we want to study a certain class of graphs. For this purpose, hand-calculation
is the only option, and the tools in this section may be helpful.

Lemma 4. If G is a d-regular graph with spectrum �1; : : : ; �n, then its complement graph G has
spectrum n¡ 1¡�1;¡(1+�2); : : : ;¡(1+�n):

Proof. Note that A(G)= J ¡ I ¡A(G). Assume v1; : : : ;vn are the eigenvectors of A(G). Since G
is d-regular, we know v1=1 and all other eigenvectors are orthogonal to it. Therefore

A(G)v1 = nv1¡v1¡�1v1=(n¡ 1¡�1)v1
A(G) vi = 0¡vi¡�1vi=¡(1+�i)vi:

So these eigenvectors form an eigenbasis for A(G), with corresponding eigenvalues n ¡ 1¡ �1;
¡(1+�2); : : : ;¡(1+�n). �

Before getting into the next tool, we recall some definitions and facts:

� The incidence matrix B :=B(G) is defined by Bij := 1fi2 ejg. (We assumed an order of the
edges.) Note that column j encodes the vertices that ej contains; row i encodes the edges that
contains i.

� The line graph of G is defined by L(G) :=
�
E;
n
fe; f g2

�
E
2

�
: e\ f =/ ;

o�
.

� The matrices CTC and CCT share the same set of non-zero eigenvalues. The proof is simple:
Let 1; : : : ; t be independent eigenvectors of CT C corresponding to non-zero eigenvalues
�1; : : : ; �t. Then CCT(Ci)=C(CTCi)=C�ii=�i(Ci), so Ci is an eigenvector of CCT.
Moreover, the vectors Ci's are linearly independent for i2 [t] (by checking definition of linear
independence).

Lemma 5. If G=(V ;E) is a d-regular graph with spectrum �1; : : : ; �t;¡d; : : : ;¡d, then its line
graph L(G) has spectrum �1+ d¡ 2; : : : ; �t+ d¡ 2;¡2; : : : ;¡2.

Proof. Let us first see what the matrices BTB and BBT mean.

The matrix BTB is formed by taking inner product between columns of B. Namely (BTB)ij is
the inner product of columns i and j of B. With our experience in set systems, this means

(BTB)ij= jei\ ej j=

8>><>>:
2 i= j
1 fei; ejg2L(G)
0 otherwise:

Therefore A(L(G))=BTB ¡ 2I.
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The matrix BBT is formed by taking inner product between rows of B. Namely (BBT)ij is the
inner product of columns i and j of B. Hence

(BBT)ij=#edges containing both i and j=

8<: d i= j
1 fi; jg2E
0 otherwise:

Therefore A(G)=BBT¡ dI .

Now we combine the two parts and see that A(L(G))+2I and A(G)+ dI have identical non-zero
eigenvalues. The lemma then follows by distinguishing zeros and non-zeros. �

Our final tool relates the spectra of a graph and its induced subgraphs.

Theorem 6. (Cauchy interlacing theorem)

Let A 2Rn�n be a real symmetric matrix with eigenvalues �1> � � � > �n. Let B 2Rm�m be a
principal submatrix (i.e. selecting same columns and rows in A) with eigenvalues �1> � � � > �m.
Then we have �i> �i>�i+n¡m.

Proof. This is an easy consequence of the variational characterization of eigenvalues. Assume
without loss of generality that B resides in the top-left corner of A, namely

A=

 
B C

CT D

!
:

For any vector x2Rm, we denote its extension x0 :=
�
x
0

�
2Rn. Note that hAx0;x0i= hBx;xi.

From Lemma 2,

�i= max
U�Rm

dimU=i

min
x2U

hAx0;x0i
hx0;x0i = max

V �Rm�f0gn¡m
dimV =i

min
y2V

hAy; yi
hy ; yi 6�i

where the inequality follows because �i optimises over a smaller region than �i does. Similarly,

�i= min
U�Rm

dimU=m¡i+1

max
x2U

hAx0;x0i
hx0;x0i = max

V �Rm�f0gn¡m
dimV =m¡i+1

min
y2V

hAy; yi
hy; yi >�i+n¡m: �

Corollary 7. Let G be a graph on n vertices and H �G be an induced subgraph on m vertices.
Then �i(G)>�i(H)>�i+n¡m(G) for all i2 [m].

3 Applications

3.1 Graph decomposition

The Peterson graph is an important toy graph on 10 vertices. It is 3-regular and thus has 15 edges.
The complete graph K10 is 9-regular and happens to have 45 edges � exactly threefold the Peterson
graph. So the question is: can we decompose K10 into three disjoint copies of Peterson graph?

This seemingly harmless question entails a very large search space actually: A brute-force approach
needs at least

�45
15

�
enumerations � far too much for even a decent personal computer!
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But with simple algebraic method the question is falsified by Schwenk. First, observe that the
decomposition is modelled by J ¡ I =P +Q+R where P ; Q;R are adjacency matrices of copies
of the Peterson graph. P ; Q;R have the same spectrum, but the eigenspaces could be different.

Next we note that Peterson graph is exactly L(K5). We may then compute by hand, using tools
in previous section, its spectrum 3; 1; 1; 1; 1; 1; ¡2; ¡2; ¡2; ¡2, where the eigenvalue 3 always
corresponds to eigenvector 1.

Let U be the eigenspace of eigenvalue 1 in P . Similarly let V be the eigenspace of eigenvalue 1 in
Q. Then dim(U)=dim(V )=5. In addition, (U +V )?f1g, so dim(U+V )610¡1=9. This implies
dim(U \V )> 1, so there does exist an eigenvector v 2U \V shared by P and Q. Multiplying the
decomposition equation by v gives

0¡v=v+v+Rv

meaning that Rv=3v. So 3 is an eigenvalue of R, contradicting the spectrum we computed.

Remark. It is a general technique to express �graph decomposition� as an adjacency matrix equa-
tion. Consider for instance a different graph decomposition problem. We want to cover the complete
graph Kn by some (not necessarily disjoint) complete bipartite subgraphs. Each edge should be
covered an odd number of times. How many subgraphs do we need?

We can again model the problem by J ¡ I =
P

i=1
m

Mi where Mi's are the adjacency matrices of
complete bipartite subgraphs. Here we work in the finite field Z2. As we know rank(Mi)= 2, so

n¡ 1= rank(J ¡ I)= rank

 X
i=1

m

Mi

!
6
X
i=1

m

rank(Mi)=2m

and m> n¡ 1
2

. We remind the reader that rank(J ¡ I)=n¡ 1 instead of n since we work in Z2.

3.2 Independent sets, cuts, and expanders

In many contexts, we want to associate each vertex v with a weight xv and measure smoothness by

X
u�v

(xu¡xv)2= d
X
v2V

xv
2¡ 2

X
u�v

xu xv:

We will see three important applications of this kind later.

Observe that it is a quadratic form hBx;xi with matrix B= I ¡A. Hence it equals

dhx;xi¡ hAx;xi

and the eigenvalues naturally come into play. We already know that �n 6 hAx;xi
hx;xi 6 �1, so we

immediately have bounds

(d¡�1) kxk26
X
u�v

(xu¡xv)26 (d¡�n) kxk2:

The RHS looks useful, but no so for the LHS. We know �1=d, so we have proven the big fact that
0 is smaller than a positive number.

But we can fix it by replacing �1 with �2, provided x? 1= v1. Under this condition hAx;xi
hx;xi 6 �2

because the v1 component of x is literally zero.

6



Maximum cut

The foregoing bounds can directly applied to bound the size of cuts. Let (S; T ) be a cut of the
graph, whose size e(S; T ) is the number of edges between S and T . To account for this, we had
better specify uniform weights on S and on T respectively, so the internal edges contribute nothing:

xv :=
�
n¡ s v 2S
¡s v 2T :

where s := jS j and the weights are chosen to get optimal result. Then we plug this into our bound
and deduce

n2 � e(S; T )6 (d¡�n) (s (n¡ s)2+(n¡ s) s2):

After simplification we get e(S; T )6 (d¡�n) s (n¡ s)/n6 (d¡�n)n/4.

For bipartite graphs �n=¡d, hence the upper bound is nd/2, which is the number of edges. Indeed
we cannot hope for better since all edges in a bipartite graph can involve in a single cut.

Independence number

Let S �V be an independent set and let s := jS j. We use essentially the same weight function:

xv :=
�
n¡ s v 2S
¡s v2/ S

and find e(S; S)6 (d¡�n) s (n¡ s)/n. But by definition S does not contain internal edges, so all
edges related to S must go between S and S. Hence d �s=e(S;S). Putting back into the inequality,
we yield s6 ¡�n

d¡�n
n.

Needless to say, this bound is valuable since it is hard to compute or even reasonably approximate
the independence number, while on the other hand computing �n is a piece of cake.

Expanders

An expander is a graph with very strong connectivity. One possible definition: If for all S�V with
jS j6 n/2 we have e(S; S)> � jS j, then we call the graph a �-expander. You should immediately
note its practical significance: expanders are very stable since it takes much effort to �cut off a large
piece�.

Given a constant �>0, constructing an infinite family of �-expanders is highly-nontrivial. Literally
all explicit constructions known today make use of the spectral inequality we saw just now.

Once more, we use the foregoing weight function. Notice that x? 1 indeed, so we derive e(S;
S)> (d¡�2)s (n¡s)/n where s := jS j> n

2
. Since n¡ s>n/2, we deduce e(S;S)> d¡�2

2
s. Hence,

the problem reduces to constructing a family of graphs for which the spectral gap d¡�2>2 �. (For
a single graph the task is trivial, but for a family of graphs with n!1, this is quite tough still.)
We will not introduce any detailed construction here.

3.3 Sensitivity conjecture

As one of the most exciting progresses of theoretical computer science in the past decade, the long-
standing �sensitivity conjecture� is resolved by a fantastically simple proof via graph spectrum.

Theorem 8. (Huang) Any induced subgraph G of the Hamming cube Hn := f0; 1gn containing
more than 2n¡1 vertices satisfies �(G)> n

p
.
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Note that if G contains 62n¡1 vertices then �(G) could be as small as 0, since Hn has equal
bipartition. With only one additional vertex, the maximum degree jumps from 0 to at least n

p
.

Proof. Let G�Hn be any induced subgraph containing m>2n¡1+1 vertices. Recall that �(G)>
�1(G). On the other hand, Corollary 7 asserts �1(G)>�1+2n¡m(Hn)>�2n¡1(Hn). So if we could
show �2n¡1(Hn)> n

p
then we are done.

Unfortunately the spectrum of Hn is spread over the interval [n;¡n] and the very middle eigenvalue
�2n¡1(Hn) is quite close to 0. So our preliminary approach does not work.

But here comes the ingenious signing trick : Instead of working directly on the adjacency matrices,
we put some minus signs on their entries. Then we apply the arguments above to the signed version
and see everything works.

Now we describe the signing. Inductively define

B1 :=
�
0 1
1 0

�
; Bi+1 :=

�
Bi I
I ¡Bi

�
:

Note that the matrix without signs, jBnj, is exactly the adjacency matrix of Hn. Also observe

Bi+1
2 =

 
Bi
2+ I O

O Bi
2+ I

!
;

so by easy induction we see Bn
2=nI, and all its eigenvalues are n. Hence the eigenvalues of matrix

Bn can only be � n
p

. Since tr(Bn)=0, the two possibilities are 50-50, thus �2n¡1(Bn)= n
p

.

Now we translate our old argument. Let C be the principal submatrix of Bn that corresponds to
G; note again jC j is the adjacency matrix of G. We have �1(C)>�2n¡1(Bn)> n

p
. So it remains

to show �(G)> �1(C). To see this, we modify the proof of Lemma 1 to remove the signing. Let
v1=(v11;:::; v1n)T be the eigenvector corresponding to �1(C), with largest coordinate v1i>0. Then

j�1(C) v1ij= jCv1ji=

������������
X
j=1

n

cij v1j

������������6
X
j=1

n

jcij j v1j6 v1i
X
j=1

n

jcij j6 v1i�(G);

hence j�1(C)j6�(G) and in particular �1(C)6�(G). �

4 Not Only Graphs

The use of eigenvalues/eigenvectors finds its way in a broader context than graph theory. In the
theory of Markov chains, for example, there exists a beautiful connection between the spectral gap
1¡�2 of a transition matrix and the mixing time of the corresponding chain.

In what follows we give an application of eigenvalues (and more broadly, linear algebra) in coding
theory. A binary code C �f¡1;1gk is called "-balanced if the Hamming distance between any two
codewords is between

� 1¡ "

2
k;

1+ "

2
k
�
; equivalently, if jhu;vij6 "k for all distinct u;v 2C.

The main goal of coding theory is to come up with a code C such that

� the Hamming distance between any two codewords is large;

� the number of codewords is relatively large, that is jC j/2k should be non-negligible.
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Clearly an "-balanced code has large separation between codewords, which is desirable. But on the
other hand, its rather restrictive definition might harm the ratio jC j/2k. Via algebraic methods,
we could probe its limitations before we ever try to construct an "-balanced code.

Theorem 9. For any " 2
h

1

k
p ;

1

2

i
and "-balanced code C � f¡1; 1gk, it holds that n := jC j6

26e�
2log(1/�)k.

By definition of "-balanced codes, the Gram matrix A := CTC has a clear-cut structure: The
diagonal entries are all k, while the remaining entries have absolute values at most "k. So the
following lemma immediately tells us that rank(A) is large.

Lemma 10. For any square matrix A we have rank(A)> tr2(A)
tr(A2) =

tr2(A)P
i

P
j aij

2 . In simple words, a

matrix has large rank if the mass is concentrated at its diagonal.

Proof. Denote r := rank(A) and suppose �1; : : : ; �r are the non-zero eigenvalues of A. Then by
Cauchy-Schwarz inequality we have

tr(A2)=
X
i=1

r

�i
2= 1

r

 X
i=1

r

�i
2

! X
i=1

r

12
!
� 1
r

 X
i=1

r

�i

!
2

= tr2(A)
r

: �

But on the other hand k> rank(C)= rank(A). Linking with the lower bound of rank(A) gives us
some reasonable upper bound for m in terms of k.

To refine the result, we study A(`) instead of A to �boost� the separation between diagonal and non-
diagonal, and then repeat the same argument. Here A(`) denotes the coordinate-wise `-th power
of matrix A.

Lemma 11. For any square matrix A and `2N, we have rank(A(`))6
�
`+ rank(A)¡ 1

k

�
:

Proof. For vectors x and y of the same dimension, we denote their coordinate-wise product as
x� y. Naturally, we denote x` :=x� � � � �x (k many times).

Denote r := rank(A). Let v1; : : : ; vn be the column vectors of matrix A, where we ordered them
appropriately so that v1; : : : ; vr constitute a basis of the column space. Hence for any i2 [n] we
could find coefficients �i1; : : : ; �ir such that vi=

P
j=1
r

�ijvj. Lifted to `-th power:

vi
`=

0@X
j=1

r

�ijvj

1A`:
Consider the set of vectors S := fv1`1� � � � �vr`r: `1; : : : ; `r 2N0;

P
j=1
r

`j= `g. Clearly the vectors
v1
`; : : : ;vn

` are spanned by S due to our derivation. Therefore

rank(A(`))= rank(v1`; : : : ;vn` )6 jS j=
�
`+ r¡ 1
r¡ 1

�
=
�
`+ r¡ 1

`

�
: �

Now we can assemble our final argument.

Proof of Theorem 9. Using the two lemmas, we have

n

1+ (n¡ 1) �2` 6
(
P

i aii
` )2P

i

P
j aij

2`
6 rank(A(`))6

�
`+ rank(A)¡ 1

`

�
6
�
`+ k¡ 1

`

�
:
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We choose ` := log n
2 log (1/�) so that n

2
6 n

1+ (n¡ 1) �2` . Hence

n6 2
�
`+ k¡ 1

`

�
6 2
�
e (`+ k¡ 1)

`

�
`

< 2
�
e+ e k

`

�
`

:

Taking logarithm and dividing both sides by log n gives

16 1
log n

+ log (e+ e k/`)
2 log (1/�)

:

When n is sufficiently large, we may neglect the 1

logn term (this could be made formal if you like.)

Then 2 log (1/�)� log (e+ e k/`), or simply k

`
� 1

e �2
¡ 1� 3

e �2
when �� 1/2. Therefore, `� 3 e �2 k

and consequently n� 26e�2log(1/�)k as desired. �
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