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1 Linear System

This section exploits a simple fact from linear algebra:

Every linear system Ax= 0 with more variables than equations has a non-trivial
solution.

1.1 Equal unions and intersections

Suppose we are given sets S1;:::;Sm� [n]. If m is large enough (saym>2n) then it is always possible
to select two groups I ] J such that

S
i2I Si=

S
j2JSj. But this bound is a gross overestimate.

We will prove that m>n+1 suffices!

Suppose m>n+1. Let vi2Rn be the characteristic vector of Si. Then the linear system

X
i=0

m

xi vi=0

has a non-trivial solution x= (x1; : : : ; xm) 2Rm. Therefore the sets I := fi 2 [m] : xi> 0g and
J := fj 2 [m] :xj< 0g are both non-empty. Then we haveX

i2I
xi vi=

X
j2J

(¡xj)vj :=v

and the coefficients on both sides are, by definition, strictly positive. (They could be fractional
numbers, of course.) Now observe that v(k)= 0 iff vi(k)= 0 for all i2 I, namely k 2/

S
i2ISi. By

the same reasoning, v(k)= 0 iff k2/
S
j2JSj. Therefore the two unions must coincide.

The proof can actually be strengthened to take care of intersections at the same time � given that
m>n+2. To see this, we invent new vectors ui :=

�
vi
1

�
and replay the game. This time we get

X
i2I

xi vi =
X
j2J

(¡xj)vj :=vX
i2I

xi =
X
j2J

(¡xj) :=�

We construct the indices I and J as before. The equal-union property holds as before, and the
additional formula further implies

T
i2I Si=

T
j2JSj! The argument is: v(k)=� iff vi(k)= 1 for

all i2 I, namely k 2
T
i2ISi. The same applies to the J part.

Thinking over again, we can interpret the proof geometrically. The characteristic vectors are lying
on an n-dimensional hypercube. Taking (non-degenerate) conic combination of vectors in which
some component is absent corresponds to moving on a face of the hypercube.

It is thus not surprising to see in the next section that the idea acts well on high-dimensional
geometry problems.

1.2 Classical theorems in discrete geometry

Lemma. (Radon) Let P = fv1; : : : ;vmg�Rd be a point set. If m> d+2 then we may partition
P =Q]R so that conv(Q)\ conv(R)=/ ;.
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The proof is a repetition of the equal-union-intersection proof: Simply normalise the shared vector
v by the shared constant � to obtain convex coefficients!

The lemma below displays the same argument yet once more:

Lemma. Let S1; : : : ; Sm�Rd be point sets with Si :=fui;vig. If m> d+1 then there is a way to
colour one point black and the other white for each Si, such that convfblack pointsg\ convfwhite
pointsg=/ ;.

Proof. Whenm>d+1, the linear systemPi=1
m xi (ui¡vi)=0 has a non-trivial solution (x1;:::;xm).

As usual, let I := fi2 [m] :xi> 0g and J := fj 2 [m] :xj< 0g which are non-empty. Then

X
i2I

xiui+
X
j2J

(¡xj)vj=
X
i2I

xivi+
X
j2J

(¡xj)uj:

So naturally we colour points on the left black, and the points on the right white. Normalising the
above equation by the constant

P
i2Ixi+

P
j2J (¡xj) gives the lemma. �

Theorem. (Helly) Let C1; : : : ; Cm be convex sets in Rd where m> d+2. If any d+2 of them
intersect, then all of them intersect.

Proof. By induction on m. The base case m=d+2 is vacuously true. Now we go from m to m+1.
For each i2 [m+1], there exists a point vi2

T
k=/ i

Ck by induction hypothesis. So we may apply
Radon's lemma to partition [m] =A]B such that there exists y 2 conv(vA)\ conv(vB).

Now we observe that vA�
T
k2BCk and vB�

T
k2ACk by definition of the points. Since the Ck's are

convex, we must have conv(vA)�
T
k2BCk and conv(vB)�

T
k2ACk. Therefore we may conclude

y 2 (
T
k2BCk)\ (

T
k2ACk)=

T
k=1
m+1

Ck, as desired. �

1.3 Tverberg's theorem*

Tverberg's theorem is a full generalisation of Radon's lemma:

Theorem. (Tverberg) Let P = fv1; : : : ;vmg�Rd be a point set. If m> (r¡ 1)(d+1)+1 then
we may partition P =

U
i=1
r Pi so that

T
i=1
r conv(Pi)=/ ;.

As in the proof of Radon's lemma, we augment each point vi 2 P into ui :=
�
vi
1

�
2Rd+1 to

�synchronise� their coefficients in a linear equation. But we are facing a technical complication.
How do we split r > 2 sets by �reading� the solution to the equation? In Radon's lemma we looked
at the signs of coefficients, but now we need a new machinery to read out r parallel tracks.

To address the issue, we will expand the point set by associating each ui with r �shadow points�
fui

jgj=1r living in higher-dimensional space R(r¡1)(d+1). Then we work our way back, namely for
each ui we carefully choose exactly one of its r shadow points ui

j. The j2 [r] that we chose encodes
the partition that vi belongs to.

First we elucidate the expansion. The r shadow points of ui are given by

ui
1 :=

0BBBBBB@
ui
0
���
0

1CCCCCCA; ui
2 :=

0BBBBBB@
0
ui
���
0

1CCCCCCA; : : : ; ui
r¡1 :=

0BBBBBB@
0
0
���
ui

1CCCCCCA; ui
r :=¡

0BBBBBB@
ui
ui
���
ui

1CCCCCCA 2R(r¡1)(d+1)
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where we divided the (r¡1)(d+1) coordinates into r¡1 �tracks� each containing d+1 coordinates.
Note that

P
j=1
r

ui
j=0, so in particular 02 convfui1; : : : ;uirg :=conv(Si).

Next we choose one shadow point for each i2 [m]. The following lemma is crucial but kind of obvious.
Its proof relies upon polytope theory; for a quick recap see https://yanhengwang.github.io/
notes/geometry.

Lemma. (Barany) Suppose we have sets S1; : : : ; Sk+1�Rk with 02 conv(Si) for all i. Then it
is always possible to pick one point si from each Si such that 02 convfs1; : : : ; sk+1g.

Proof. We call R�
S
i=1
k+1

Si a rainbow set if jR\Sij=1 for all i. We want to prove that there exists
a rainbow set R with 02 conv(R).

Suppose to the contrary that no such rainbow set exists. Then, among all rainbow sets we choose
the R that minimises dist(0; conv(R)). Let x2 conv(R) be the closest point to 0, which must lie
on a face F of the polytope conv(R). Moreover, F is supported by a hyperplane H perpendicular
to the line 0x. Assume conv(R)�H¡ and 02H+. Without loss of generality we may also assume
that the vertices of F are p12S1; : : : ; p`2S` where `6 k.

For all i>`, recall that 02conv(Si), so there must exist qi2Si\Hi
+. Then we consider the rainbow

set R0 := fp1; : : : ; p`; q`+1; : : : ; qk+1g. Clearly dist(0; conv(R0)) < dist(0; x) = dist(0; conv(R)),
contradicting the choice of R. �

With Barany's lemma, one could choose for each i2 [m] a j(i)2 [r] such that 02 conv
�
ui
j(i)	

i=1
m .

That is, 0=
P

i=1
m xi ui

j(i) for some convex coefficients xi's. Now let's decipher the information
hidden in this (r¡ 1)(d+1)-dimensional vector equation.

By construction of the shadow points, the equation naturally splits into r¡ 1 parallel tracks; we
denote Ij := fi2 [m] : j(i)= jg and read from the equation

X
i2Ij

xi

�
vi
1

�
=
X
i2Ir

xi

�
vi
1

�
:=
�
v
�

�

for all j 2 [r¡ 1]. Normalising by �, we conclude

1
�
v=

X
i2Ij

xi
�
vi 2 convfvigi2Ij

for all j 2 [r], thus
T
j=1
r (convfvigi2Ij)=/ ;.

2 Polynomial System

An indispensable theme in combinatorics is �making choices�. In such scenarios, a polynomial
system comes more handy than linear systems. Luckily, just as in linear systems, we can reveal the
number of solutions of a polynomial system given the comparison betwen the number of variables
and the (weighted) number of equations.

Theorem. (Chevalley-Warning) Let F be a finite field of of characteristic p. Consider the
polynomial system where f1; : : : ; fn :Fm!F:8<: f1(x1; : : : ; xm)= 0;

� � � � � �
fn(x1; : : : ; xm)= 0:
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If m>
P

i=1
n deg(fi) then the number of solution of the system is a multiple of p.

In typical applications, we design a polynomial system whose non-trivial solutions correspond to
our desired objects. We also ensure that the system has a trivial solution, say 0. Then Chevalley-
Warning will imply another, non-trivial solution, thus proving the existence of our desired object.

Towards the proof, we need a basic lemma about finite fields:

Lemma. Let F be a finite field of size q. Then
P

x2Fx
k=0 for all 06 k < q¡ 1.

Proof. Denote s :=
P

x2Fx
k. Take any y 2Fnf0g such that yk=/ 1. Such y always exists because

the equation tk=1 has at most k6 q ¡ 2 solutions. Observe s � yk=
P

x2F (x y)
k=
P

z2F z
k= s,

namely s � (yk¡ 1)=0. Since yk=/ 1 we conclude s=0. �

Proof of Chevalley-Warning Theorem. Let q be the size of the finite field F. It is well known that
xq¡1=1 for all x2Fnf0g, and 0 otherwise. So the number of solutions (modulo p) of the system
is counted by

N =
X

x1; : : : ;xm2F

Y
i=1

n

(1¡ fi
q¡1(x1; : : : ; xm)):

Shattering the product into monomials, we get

N =
X

x1; : : : ;xm2F

X
k1; : : : ;km

Ck1; : : : ;km �
Y
i=1

n

xi
ki

=
X

k1; : : : ;km

Ck1; : : : ;km �
Y
i=1

n  X
xi2F

xi
ki

!

for some coefficients Ck1; : : : ;km. By assumption of the theorem the degree of each monomial is at
most (q¡1) �

P
i=1
n deg(fi)< (q¡1)m. In other words, k1+ ���+km is always smaller than (q¡1)m

in the summation. Hence for each combination of k1; : : : ; km there always exists some i :ki< q¡ 1.
By the lemma we see the inner summation

P
xi2F xi

ki is zero, thus the entire product vanishes.
Therefore, N =0. �

2.1 Erd®s-Ginzburg-Ziv theorem

Given a1; : : : ; am 2Zn (m> n), can we always choose n of them which sum up to 0? The EGZ
theorem gives an affirmative answer whenever m> 2n¡ 1.

Let us first assume n= p is a prime. We shall utilise Fermat's little theorem xp¡1=
�
1 x=/ 0
0 x=0

(mod p)

to model binary choices. This is an important trick that should be kept in mind.

We naturally introduce a variable xi for each i2 [m], modelling whether or not we choose ai. Then
our requirements translate to the following:

X
i=1

m

xi
p¡1 = 0;

X
i=1

m

ai xi
p¡1 = 0:

The sum of degrees is 2(p¡ 1)< 2p¡ 16m. Also 0 is a trivial solution to the system. Hence by
Chevalley-Warning theorem there exists a non-trivial solution x, which encodes the choices we
made.
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Next we proceed to general n by induction. Suppose n= s t and we have m> 2st¡ 1 numbers at
hand. We apply induction hypothesis to find fb11; : : : ; b1sg� fa1; : : : ; amg such that

P
i=1
s b1s=0

(mod s); here the numbers are interpreted as in Zs. Then we delete these numbers from the list
and repeat the procedure. In round i we find and delete numbers fbi1;: ::; bisg. The procedure lasts
for 2t¡ 1 rounds; by then there are only m¡ s (2t¡ 1) numbers left, so we may no longer apply
induction hypothesis.

For each round i2 [2t¡1], we define a �summary value� bi :=
1

s

P
j=1
s bis. Since by construction the

sum
P

j=1
s bis=0 (mod s), we know bi2Z. We interpret it as a number in Zt and apply induction

hypothesis to find I � [2t¡ 1] : jI j= t such that
P

i2I bi=0 (mod t). Expanding the definition:

0=
X
i2I

bi=
1
s

X
i2I

X
j=1

s

bis (mod t)

Therefore
P

i2I
P

j=1
s bis=0 (mod st). This gives us exactly n numbers that sum up to 0 in Zn.

2.2 Davenport constant

Continuing the EGZ theorem but with setting slightly modified: Given a1; : : : ; am2G for a group
G with jGj=n. Can we always choose some (at least one) of them which sum up to 0?

The minimum m that guarantees an affirmative answer is called the Davenport constant of G,
denoted S(G).

It is relatively easy to see S(Zn)=n. Indeed, if someone maliciously gives us n¡1 copies of 12Zn,
then it is impossible to sum them up to 0. On the other hand, if we are given m> n numbers
a1; : : : ; am2Zn, then we append some dummy am+1; : : : ; a2n¡1 := 0 and conclude from EGZ that
we can choose n of them summing up to 0. Since there are less than n dummy numbers, we must
have chosen at least one number from a1; : : : ; am, as required.

Also without much effort we find S(Zpk) = pk= n. The proof of EGZ carries over here (but with
the second equation only).

However, for many other groups, say Z2�Z3, the proof technique deteriorates because different
coordinates do not �synchronise�. Still, we may characterise the Davenport constant of a rich class
of groups:

Theorem. (Olson) The Davenport constant of group G=
Q

i=1
r

Zp
ki is 1+

P
i=1
r (pki¡ 1).

The proof is beyond the scope of the note. We remark that any Abelian group could be decomposed
into

Q
i=1
r

Zni, so Olson's theorem essentially applies to all Abelian groups of size pk.

2.3 4-regular graph contains 3-regular subgraph

Although this sounds obvious at first glance, it is not so trivial after careful thoughts. There is a
combinatorial proof by Tashkinov in 1982. But here we present a extremely simple algebraic proof
that gives a slight weakening:

Every 4-regular (multi)graph + an edge contains a 3-regular subgraph.

The idea is straightforward: we want to choose a subset of edges such that every vertex is covered
either 0 or 3 times. Hence we introduce a variable xe2Z3 for each e2E, indicating if we selected
edge e. Then the constraint writes X

e3v
xe
2=0 8v 2V :
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We remark that the equation says �every vertex is covered a multiple of 3 times�. But since a 4-
regular graph+an edge has maximum degree 5, the only possible coverage is 0 or 3.

The system has 4n

2
+1= 2n+1 variables, and the total degree is 2n. Also 0 is a trivial solution.

So applying Chevalley-Warning finishes the proof.

3 Roots of a Single Polynomial

As we have seen, polynomials can encode combinatorial constructions in their roots. Chevalley-
Warning theorem helps extract these constructions. But it has weaknesses. First, it applies only
to finite fields. Second, it entails an undesirable �modulo characteristic p� even if the field has size
p100, say.

This and the next sections will develop more general tools in polynomial theory. In particular, we
elucidate the relations between the degree and the number of roots of a single polynomial � either
univariate or multivariate, in finite fields or in infinite fields. These tools are not only usable in
constructing objects but also in deriving bounds.

The fundamental theorem of algebra states that a non-trivial univariate polynomial of degree d
has at most d roots. (If the polynomial is over C then it has exactly d roots; but in other fields,
e.g. R;Zp, the number could be less.) In simple words: �low-degree polynomial has few roots�.

This principle generalises to multivariate polynomials as well:

Lemma. A polynomial f :Fqn!Fq on finite field Fq with deg(f)6 d has at most d qn¡1 roots.

Proof. By induction on n. For n=1 the claim is clear. Now we proceed from n to n+1.

We decompose f(x1; : : : ; xn; y)=
P

i=0
k

gi(x1; : : : ; xn) yi where k6 d is the largest degree that the
variable y has. The polynomial gi :Fqn!Fq has degree at most d¡ i. For a particular choice of
x1; : : : ; xn, there are two cases:

� If gi(x1; : : : ; xn)= 0 for all i, then f(x1; : : : ; xn; y)= 0 whatever we choose for y 2Fq. This
case happens 6(d¡ k) qn¡1 times by induction hypothesis (considering gk(x1; : : : ; xn)= 0
alone). So it contributes at most (d¡ k) qn roots of f .

� Otherwise, f(x; : : : ; xn; y) is a non-trivial univariate polynomial, hence having 6k roots.
This case happens (trivially) 6qn times. So it contributes k qn roots of f .

Summing these up we have at most d qn roots, finishing the induction. �

3.1 Finite field Kakeya set

S �Fq
n is called a Kakeya set if S contains a �line� in every �direction�. Formally, for any u 2

Fq
nnf0g, there exists b2Fq

n such that b+ tu2S for all t2Fq.

How small can a Kakeya set be? Dvir proved the following lower bound: jS j>
�
n+ q¡ 1
q¡ 1

�
.

Suppose to the contrary that jS j<
�
n+ q¡ 1
q¡ 1

�
. Intuitively, it is possible to cook up a low-degree

polynomial that vanishes on S because S is small. Indeed, there are
�
n+ q¡ 1
q¡ 1

�
monomials on n

variables of degree 6q¡ 1. So we can solve non-trivial coefficients from the linear equation

X
k1+� � �+kn6q

Ck1; : : : ;kn �x1
k1x2

k2 � � � xnkn=0 8(x1; : : : ; xn)2S:
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Hence, there exists a polynomial f :Fqn!Fq of degree d< q that vanishes on the entire S.

Next we use the Kakeya property to deduce that f must vanish everywhere, which leads to a
contradiction.

Write f :=g1+ ���+ gd where gi groups together all terms of degree i. Fix an arbitrary u2Fqnnf0g.
By the Kakeya property, we may find b2Fq

n such that h(t) := f(b+ tu) vanishes for all t2Fq.
In other words, h is identically zero. Note that the h(t)= gd(u) td+ � � �. Since deg(h)= d< q, this
initial term can only be 0; otherwise h would be non-trivial and has up to d< q roots, not enough
to cover the entire space. So we conclude that gd(u) = 0. The argument works for every u=/ 0.
Therefore, gd has qn¡1>dqn¡1 roots, and by the lemma it has to be trivial. But this contradicts
the degree assumption deg(f)= d.

3.2 Number of joints

Given a set of n lines in R3, a joint is where three or more non-coplanar lines intersect. How many
joints can there be?

The following lemma is a stepping stone for an upper bound.

Lemma. For a set of n lines with m joints, there exists a line that contains 62 m3
p

joints.

Assuming the lemma, we upper bound m as follows. Whenever there remains a joint, we choose
the line from the lemma and remove it. The procedure lasts for at most n steps since no joint can
survive after a complete removal. So m6 2n m3

p
. From this we solve m6 (2n)3/2.

Proof of the lemma. The main builk of the proof mimics the Kakeya one, though we no longer
have a bound for the number of roots of the (now real-valued) multivariate polynomial.

Assume to the contrary that all lines contain >2 m3
p

joints. The plan is to get a minimal degree
polynomial f that vanishes on all joints. Then, since each line contains excessively many joints, we
can show that f in fact vanishes on all lines. Finally, we take directional derivatives to contradict
the minimality of f .

Because there are
�
2+2 m3p

3

�
>

8(m¡ 1)
6

>m monomials of degree <2 m3
p

on 3 variables, there exists

a polynomial f of degree <2 m3
p

that vanishes on all joints. We take one with minimal degree,
and denote the degree d< 2 m3

p
.

By our assumption, f has more than d roots along each line. Fix any line l :a t+ b (t2R). Then
the univariate polynomial h(t) := f(a t+ b) has more than d roots � more than its degree! Hence
h has to be trivial, and thus f =0 on the any line l.

Finally we take derivatives; namely let g := df

dx dy dz
. Note that this is a polynomial with strictly

smaller degree. Note that the directional derivatives of f w.r.t. the three lines defining a joint are
all root, since f is constantly root on those directions. Moreover the lines are non-coplanar and
thus form a basis. This means g=0 on all joints, contradicting the minimality of f . �

4 Roots of Polynomial in a Box

In general we cannot bound the number of roots of a multivariate polynomial over infinite fields.
Consider one of the simplest example f(x; y) :=x+ y over R2; there are infinitely many roots!

However, if we focus only on a finite �box� in the field, then it is possible to reproduce our slogan
�low-degree polynomial has few roots�. (Check it with the polynomial above!)
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Theorem. (combinatorial Nullstellensatz) Let f :Fn!F be a polynomial with deg(f) =P
i=1
n di. If the term

Q
i=1
n xi

di has non-zero coefficient, then for any box S1 � � � � � Sn with
jSij> di+1, there exists an x2S1� � � � �Sn such that f(x)=/ 0.

Proof. By induction on n. The base case n=1 is obvious. Now we step from n to n+1.

If the maximum degree of variable xn+1 happens to be dn+1 :=� then we are basically done. The
reasoning is as follows. We single out the last variable and write f(x1; : : : ; xn+1)=

P
i=1
� gi(x1; : : : ;

xn) xn+1i . Note that deg(g�) = deg(f)¡ �=
P

i=1
n di. So we may apply induction hypothesis and

conclude g�(x1; : : : ; xn) =/ 0 for some particular choice of x1; : : : ; xn. We fix this choice and then
regard f as a univariate polynomial about xn+1. It has degree �< jSn+1j, hence there indeed exists
a value on which the polynomial does not vanish.

Now we deal with the case when the maximum degree of xn+1 exceeds �. The idea is to drop the
excessive degree without changing the evaluation on the box. Whenever we see an occurrence xn+1

�+1 ,
we replace it by

¡
xn+1
�+1 ¡

Q
s2Sn+1 (xn+1¡ s)

�
. Observe that the product always evaluates to zero

if we plug in any xn+12Sn+1. Moreover this operation cancels the xn+1
�+1 . If we have an occurrence

like xn+1
�+2 , then we write it as xn+1 �xn+1�+1 and apply the procedure. When the procedure terminates

the degree of xn+1 is dropped to � as desired.

One last thing to check: the term
Q

i=1
n+1

xi
di itself is not killed. (If not, what will break?) Luckily

this is indeed the case since we need a non-existent term
Q

i=1
n+1xi

dixn+1 to kill it! �

We can use this powerful theorem in two ways:

Deriving bounds. We design a polynomial that vanishes on a big box. Via the theorem, this
transfers to a lower bound on the degree � typically a function of problem parameters.

Proving existence. We design a low-degree polynomial f whose roots encode structure of
interest. In addition our �search space� is a box. We then use the theorem to show that f does
not vanish in the box.

4.1 Cauchy-Davenport theorem

We define the sum of two sets as A+B := fa+ b : a2A; b 2Bg. As a rule of thumb, jA+B j is
small if A and B are largely overlapping. It is easy to show jA+B j> jAj+ jB j¡ 1, with equality
when A= [s] and B= [t]. Does the same bound holds in modular arithmetic?

Theorem. (Cauchy-Davenport) For sets A;B �Zp we have jA+B j>min fp; jAj+ jB j ¡ 1g.

Proof. First we consider the case jAj+ jB j> p+1. For any x2Zp we know jfxg¡Aj= jAj, hence
jfxg¡Aj+ jB j> p+1, implying (fxg¡A)\B=/ ;. Therefore x=a+ b for some a2A; b2B. This
proves jA+B j= p.

Next we may assume jAj+ jB j6 p. Suppose to the contrary that jA+B j6 jAj+ jB j¡2. Then we
take a superset C �A+B : jC j= jAj+ jB j ¡ 2. We define a polynomial f :Zp2!Zp that vanishes
on the whole box A�B:

f(x; y) :=
Y
c2C

(x+ y¡ c):

Next we will show that the highest-order term xjAj¡1yjB j¡1 has non-zero coefficient. (There are
many highest-order terms, we choose this particular one because we want to apply combinatorial
Nullstellensatz.) Computing the coefficient gives

�jAj+ jB j ¡ 2
jAj ¡ 1

�
=/ 0 (mod p). Therefore, we conclude

from combinatorial Nullstellensatz that f cannot vanish on the box A�B, a contradiction. �
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There is many variants of the problem:

� Define A�B := fa+ b : a2A; b2B; a=/ bg. Can we find a lower bound for jA�B j?

� What if A�B := fa+ b : a2A; b2B; a b=/ 1g?

All these variants can be answered in a similar approach, with a careful construction of the poly-
nomial. In the first variant, for instance, we may construct f(x; y) := (x¡ y)

Q
c2C (x+ y ¡ c) to

purposely zero the polynomial on the entire box A�B.

4.2 Covering hypercube by hyperplanes

How many hyperplanes do we need to cover all vertices in the hypercube f0; 1gn? The answer is
trivially two: the hyperplanes x1=0 and x1=1 will do the job, and there is no hope for less.

But let us change the statement. What if we disallow you from covering the origin? We can achieve
it by n hyperplanes: xi=1 for i2 [n]. Is this the best we could do?

Yes, it is. Assume our hyperplanes are Hj :ajTx=1 for j 2 [m]. We design a natural polynomial

f(x) :=
Y
j=1

m

(ajTx¡ 1)¡ (¡1)m
Y
i=1

n

(1¡xi)

which vanishes on f0; 1gn. (The first half of the definition just translates the problem constraint;
the second half squeezes the origin in so that we have a complete vanishing box.) If we have too
few hyperplanes (i.e. m<n), then the highest-order term

Q
i=1
n xi has coefficient (¡1)m+n+1=/ 0,

contradicting combinatorial Nullstellensatz.

4.3 The permanent lemma

Let A2Fn�n with per(A)=/ 0 and b2Fn. You predefine some binary choices for each of x1; : : : ;
xn, for instance x12f0;1g, x22f1;3g and so on. No matter what options you provide, I can always
choose x1;:::; xn �maliciously�, though conforming to your offer, such that Ax and b differ in every
coordinate!

The proof is short, given our knowledge of combinatorial Nullstellensatz. Construct polynomial
f(x1; : : : ; xn) :=

Q
i=1
n (aix¡ b) where ai is row i of A. The coefficient of the highest-order term,Q

i=1
n xi, is just per(A)=/ 0, and we are done!

4.4 Existence of good permutation

Theorem. Let A;B�Fp, jAj= jB j=n and fix a permutation (a1; : : : ; an) of A. Then there exists
a permutation (b1; : : : ; bn) of B such that ai+ bi are distinct for all i.

Proof. Naturally, we define a polynomial that takes in a permutation of B and determines if it is
good:

f(b1; : : : ; bn) :=
Y

16i<j6n
((aj+ bj)¡ (ai+ bi))

= Vand(a1+ b1; : : : ; an+ an):

where

Vand(t1; : : : ; tn) :=

������������������
1 1 � � � 1
t1 t2 � � � tn
��� ��� �� � ���

t1
n¡1 t2

n¡1 � � � tn
n¡1

������������������=
Y

16i<j6n
(tj¡ ti)
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denotes the Vandermonde determinant on variables t1; : : : ; tn.

We want to apply combinatorial Nullstellensatz on the box Bn to detect a non-vanishing point.
But be careful! The detected point might not encode a valid permutation; it could be something
like (1; 1; 4; 2; 3; 4). To explicitly rule out such case, we modify our polynomial into

f(b1; : : : ; bn) :=Vand(b1; : : : ; bn) �Vand(a1+ b1; : : : ; an+ an);

so any non-vanishing point on Bn would be a valid good permutation.

Note that deg(f) = 2
�
n
2

�
= n(n¡ 1). The remaining job is to verify the highest-degree monomialQ

i=1
n bi

n¡1 has non-zero coefficient in f . This is as well the coefficient of the same monomial in

(Vand(b1; : : : ; bn))2 =

 X
�2Sn

(¡1)sgn(�) �
Y
i=1

n

bi
�(i)¡1

!
2

=
X
�2Sn

X
�2Sn

(¡1)sgn(�)+sgn(�) �
Y
i=1

n

bi
�(i)+�(i)¡2

:

In order to get the monomial
Q

i=1
n bi

n¡1, we must choose � such that �(i) :=n+1¡�(i). Hence
sgn(�)+ sgn(�)= 0 and the coefficient of interest is simply

P
�2Sn 1=n! =/ 0. �
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