Dimensional Argument

Yanheng Wang

Suppose we want to study a collection \mathcal{A} defined via certain constraints. The dimensional argument could help us bound the size $|\mathcal{A}|$, a first indicator of the behaviour of \mathcal{A}. To apply the argument, we injectively map $\mathcal{A} \ni a \mapsto \sigma_{a} \in V$ where V is a linear space. Then we exploit the constraints to show that $\left\{\sigma_{a}\right\}_{a \in \mathcal{A}}$ are linearly independent, thus concluding $|\mathcal{A}|=\left|\left\{\sigma_{a}\right\}_{a \in \mathcal{A}}\right| \leqslant \operatorname{dim}(V)$.
The key to dimensional argument is designing a suitable injection $\sigma: \mathcal{A} \rightarrow V$. Typically we work backwards:

- Explore the constraints and model them algebraically;
- Design the σ_{a} 's so that we could prove their linear independence by the algebraic properties we collected earlier.
- Bound the dimension of the linear space $V:=\operatorname{span}\left\{\sigma_{a}: a \in \mathcal{A}\right\}$.

1 Town theorems

Odd-even town

Let $\mathcal{A} \subseteq 2^{[n]}$ be a collection of subsets of $[n]$. For all distinct $A, B \in \mathcal{A}$, we require that $|A|$ is odd while $|A \cap B|$ is even. How large can $m:=|\mathcal{A}|$ be?

- We may encode a set $A \subseteq[n]$ as a binary vector (termed the charactersitic vector) $\chi_{A} \in\{0,1\}^{n}$ by putting a 1 at coordinate i iff $i \in A$. Then the constraints simply say $\left\langle\chi_{A}, \chi_{A}\right\rangle=1(\bmod 2)$ and $\left\langle\chi_{A}, \chi_{B}\right\rangle=0(\bmod 2)$.
- If we interpret the characteristic vectors as vectors in \mathbb{F}_{2}^{n} then they are orthonormal! From basic linear algebra we know orthonormal vectors are linear independent.
- With this in mind, we simply design $\sigma: \mathcal{A} \rightarrow \mathbb{F}_{2}^{n}, A \mapsto \chi_{A}$ and conclude $m \leqslant \operatorname{dim}\left(\mathbb{F}_{2}^{n}\right)=n$.

Even-odd town

In fact, we may switch the parities (i.e. constraining $|A|$ even and $|A \cap B|$ odd) and derive the same bound. One lazy proof is to append a dummy element 0 to all the sets, thus alternating the parities back. (A small modification is necessary in the argument: the characteristic vectors are now living in $\{1\} \times \mathbb{F}_{2}^{n}$, a linear space of dimension n still.)

But it is instructive to present a direct proof. Again we map sets to characteristic vectors in \mathbb{F}_{2}^{n} and find $\left\langle\chi_{A}, \chi_{A}\right\rangle=0$ and $\left\langle\chi_{A}, \chi_{B}\right\rangle=1$. This time, showing linear independence is less straightforward. To do so, we place the vectors in a matrix $M \in \mathbb{F}_{2}^{n \times m}$ and try to show $\operatorname{rank}(M)=m$. Note

$$
M^{\mathrm{T}} M=\left(\begin{array}{cccc}
0 & 1 & \cdots & 1 \\
1 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 0
\end{array}\right)=J-I .
$$

Recall that J has eigenvalues $m, 0, \ldots, 0$, so $J-I$ has eigenvalues $m-1,-1, \ldots,-1$. Hence

$$
\operatorname{rank}(M)=\operatorname{rank}\left(M^{\mathrm{T}} M\right)=\operatorname{rank}(J-I)=m .
$$

Therefore the vectors are indeed independent, implying $m \leqslant n$. (Alternatively, we could compute the $\operatorname{det}\left(M^{\mathrm{T}} M\right) \neq 0$ to conclude the same.)

Even-even and odd-odd towns?

What if we require both $|A|$ and $|A \cap B|$ even (or both odd)? Then our previous argument breaks since the charactersitic vectors are deeply dependent. Actually in this scenario, m could be as large as $2^{n / 2}$ - consider partitioning [n] into $n / 2$ pairs, say $p_{i}:=\{2 i-1,2 i\}$ for $i \in[n / 2]$, and letting $\mathcal{A}:=\left\{\bigcup_{i \in I} p_{i}: I \subseteq[n / 2]\right\}$.

Via very basic properties of orthogonal complements, one can show a tight upper bound $m \leqslant 2^{n / 2}$. The proof is easy but off-topic, so we do not pursue it here.

Generalisations

We list several generalisations of town theorems and give hints on how to approach them:

- For prime p, require $|A| \neq 0(\bmod p)$ and $|A \cap B|=0(\bmod p)$.
- Result: $m \leqslant n$.
- Method: work in \mathbb{F}_{p}^{n}.
- For $q=p^{k}$ where p is prime, require $|A| \neq 0(\bmod q)$ and $|A \cap B|=0(\bmod q)$.
- Result: $m \leqslant n$.
- Method: work in \mathbb{Q}^{n} and use some number theory to derive linear independence. We cannot work in \mathbb{F}_{q}^{n} because it is not \mathbb{Z}_{q} ! More to the point, $\operatorname{char}\left(\mathbb{F}_{q}^{n}\right)=p$, so a zero sum only implies "mod p " rather than "mod q ".
- For $q=\prod_{i=1}^{r} p_{i}^{k_{i}}$ where p_{i}^{\prime} 's are distinct primes, require $|A| \neq 0(\bmod q)$ and $|A \cap B|=$ $0(\bmod q)$.
- Result: $m \leqslant r n$.
- Method: by induction on r; partition \mathcal{A} depending on $|A|=0\left(\bmod p_{r}^{k_{r}}\right)$ or not; then apply induction hypothesis and the previous part.
- We may also generalise the number of intersecting sets. For example, require $|A|$ odd but $|A \cap B \cap C|$ even.
- Result: $m \leqslant n(n+1)$.
- Method: build a graph $G:=(\mathcal{A},\{\{A, B\}:|A \cap B|$ odd $\})$. Using known results and the property, show $\Delta(G) \leqslant n$. Then $\chi(G) \leqslant n+1$, and $\alpha(G) \geqslant \frac{m}{n+1}$. But on the other hand any independent set corresponds to odd-even town, hence $\alpha(G) \leqslant n$.

2 Fisher's inequality

Again consider a collection $\mathcal{A}=\left\{A_{1}, \ldots, A_{m}\right\} \subseteq 2^{[n]}$. This time we require that $\left|A_{i} \cap A_{j}\right|=\lambda$ for all distinct i, j.

First we rule out an uninteresting case. If there is a set A_{i} of size exactly λ, then all other sets must be supersets of A_{i}, and their pairwise intersections give A_{i}. The picture looks like a "sunflower" where A_{i} locates at its core and the "petals" are disjoint. So the total number of sets, m, is at most n.

Now we may assume $\left|A_{i}\right| \geqslant \lambda+1$ for all i. We copy the argument in previous section. Here we work in \mathbb{R}^{n} and arrange the characteristic vectors into matrix $M \in \mathbb{R}^{m \times m}$ such that

$$
M^{\mathrm{T}} M=\left(\begin{array}{cccc}
\left|A_{1}\right| & \lambda & \cdots & \lambda \\
\lambda & \left|A_{2}\right| & \cdots & \lambda \\
\vdots & \vdots & \ddots & \vdots \\
\lambda & \lambda & \cdots & \left|A_{m}\right|
\end{array}\right)
$$

We calculate the determinant and find it $\left(1+\sum_{i=1}^{m} \frac{\lambda}{\left|A_{i}\right|-\lambda}\right) \prod_{i=1}^{m}\left(\left|A_{i}\right|-\lambda\right) \neq 0$, thus proving $m \leqslant n$.

Next we present another approach which maps sets to polynomials rather than characteristic vectors. For each $A \in \mathcal{A}$ we associate a (linear) polynomial

$$
p_{A}(x):=\left\langle x, \chi_{A}\right\rangle-\lambda .
$$

Note that $p_{A}\left(\chi_{A}\right)=|A|-\lambda \geqslant 1$ while $p_{A}\left(\chi_{B}\right)=0$ for all $B \in \mathcal{A} \backslash\{A\}$. Therefore the polynomials are linearly independent. (Prove by definition of linear independence; or decompose the polynomial to a standard basis and compute rank.) On the other hand, the dimension of the space is at most n, since every such polynomial is a linear combination of monomials x_{1}, \ldots, x_{n}. This implies $m \leqslant n$.

$3 k$-distance set

Let $P \subseteq \mathbb{R}^{d}$ be a point set in Euclidean space. We call it a k-distance set if every pair $\{p, q\} \in\binom{P}{2}$ satisfies $\|p-q\|^{2} \in\left\{\delta_{1}, \ldots, \delta_{k}\right\}$, where $\delta_{1}, \ldots, \delta_{k}$ are distinct positive numbers. How large can P be?

For the case $k=1$, it is quite intuitive that $|P| \leqslant d+1$, with the extremal example being the regular simplex. One argument goes as follows. Without loss of generality assume $\mathbf{0} \in P$ and $\delta_{1}:=1$. We consider the remaining points $P^{\prime}:=P \backslash\{\mathbf{0}\}$. By equidistant property we see $\|p\|=1$ and $1=\|p-q\|^{2}=2-2\langle p, q\rangle$ for all $p, q \in P^{\prime}$. So we could again show that the points are linearly independent, so $\left|P^{\prime}\right| \leqslant n$. (Remark: in this proof we use the trivial mapping $\sigma:=\mathrm{id}$.)

For $k \geqslant 2$ the previous proof does not generalise. The natural step is to try some stronger and more flexible object, the polynomials. To this end, we design, for each $p \in P$, a polynomial

$$
f_{p}(x):=\prod_{i=1}^{k}\left(\|x-p\|^{2}-\delta_{i}\right)
$$

which nicely captures the k-distant property. Namely, $f_{p}(p) \neq 0$ yet $f_{p}(q)=0$ for any distinct $p, q \in P$. Hence the polynomials are linearly independent. It remains to bound the dimension of this polynomial space. As a very crude estimate, the dimension is at most $(d+1)^{2 k}$ because $\operatorname{deg}\left(f_{p}\right) \leqslant 2 k$ and there are at most that many (in fact, $\binom{d+1+2 k}{2 k}$ to be precise) monomials to choose.

But we could be more refined. We expand the definition by

$$
f_{p}(x)=\prod_{i=1}^{k}\left(\|x\|^{2}-2 \sum_{i=1}^{d} p_{j} x_{j}+\left(\|p\|^{2}-\delta_{i}\right)\right)
$$

Observe that the polynomials are spanned by the monomials

$$
\left\{x_{1}^{\beta_{1}} \cdots x_{d}^{\beta_{d}}\|x\|^{2 \beta_{0}} \mid \sum_{j=0}^{d} \beta_{j} \leqslant k\right\} .
$$

Basically, the types of monomials are quite restricted. It remains to count the number, but this is a variant of "balls and bins" model. We introduce a slack variable to make the " \leqslant " a "=". Then we count the number of possibilities to distribute k balls into $d+2$ bins - which can be realised by choosing $d+1$ positions for delimiters from $d+1+k$ possible slots. So the count is $\binom{d+1+k}{d+1}=\binom{d+1+k}{k}$.

4 L Family

Suppose $\mathcal{A} \subseteq 2^{[n]}$ and let p be a prime.

- We call it an L-mod- p family if $|A \cap B| \in L(\bmod p)$ and $|A| \notin L(\bmod p)$ for all distinct $A, B \in \mathcal{A}$.
- We call it an L family if $|A \cap B| \in L$ for all distinct $A, B \in \mathcal{A}$.
- We call it r-uniform if every set $A \in \mathcal{A}$ has the same cardinality $|A|=r$.

Given n and $k:=|L|$, how large can an L (resp. L-mod- p) family be?
This is a general framework which models both town theorem and Fisher's inequality. Their conditions can be rephrased as " $\{0\}$-mod- 2 family" and " $\{\lambda\}$ family", respectively.

Let's look at L-mod- p family first. It's no longer a good idea to map to characteristic vectors because we don't have enough information for proving independence. So we try mapping to polynomials in a way that they are easily seen independent. For each A define polynomial $f_{A}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{Z}_{p}$ by

$$
f_{A}(x):=\prod_{l \in L}\left(\left\langle\chi_{A}, x\right\rangle-l\right) .
$$

Observe that $f_{A}\left(\chi_{A}\right) \neq 0$ and $f_{A}\left(\chi_{B}\right)=0$ for all $B \in \mathcal{A} \backslash\{A\}$. So the polynomials are linearly independent. It remains to bound the dimension of this polynomial space.

To this end, we note that the polynomials have degrees at most $k=|L|$, so they are of course spanned by all $\binom{n+k}{k}$ monomials. This gives a (quite trivial) upper bound on the dimension. But we can do better by exploiting the simple fact $1^{t}=1$ and $0^{t}=0$. Namely, we could replace any high-order term in $p_{A}(x)$ by a multilinear term, for instance replacing $x_{1}^{3} x_{4}^{2} x_{5}$ with $x_{1} x_{4} x_{5}$. This operation will change the polynomial, but it preserves the values on characteristic vectors! Hence the resulting polynomials are still linearly independent; furthermore they are spanned by all multilinear polynomials on n variables of degree at most k. Now we derive a bound $\sum_{i=0}^{k}\binom{n}{i}$, tighter than our previous $\binom{n+k}{k}$ especially when k is large.

Now we move on to L family. The idea is the same but with some twist because it is now possible that $|A| \in L$. Still, we may enforce linear independence by "upper triangular form" instead of the "diagonal form". To be specific, define $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f_{A}(x):=\prod_{\substack{l \in L \\ l<|A|}}\left(\left\langle\chi_{A}, x\right\rangle-l\right)
$$

Still $f_{A}\left(\chi_{A}\right) \neq 0$. Besides, $f_{A}\left(\chi_{B}\right)=0$ whenever $|A \cap B|<|A|$, or equivalently $A \nsubseteq B$. We claim that the polynomials are linearly independent. Suppose for the sake of contradiction that $\sum_{A \in \mathcal{A}} \alpha_{A} \cdot f_{A}(x) \equiv 0$ for some non-trivial coefficients. Then let $B \in \mathcal{A}$ be the inclusionminimal set with $\alpha_{A} \neq 0$. We evaluate the equation at $x:=\chi_{A}$ and find everything except $\alpha_{A} \cdot f_{A}$ go away (since all $A \subset B$ have zero coefficient, and all $A \nsubseteq B$ have zero f_{A} value). So we must conclude $\alpha_{A}=0$, a contradiction.
By the same line of argument as in previous proof, we derive an upper bound $\sum_{i=0}^{k}\binom{n}{i}$.
Next, we examine r-uniform L family and see how the uniformity condition sharpens our bound. The key ingredient is to "squeeze in" more polynomials besides $f_{A}(x)$ yet maintaining linear independence and the dimension. We define, for each $I \subseteq[n]:|I| \leqslant k-1$, a polynomial $h_{I}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
h_{I}(x):=(\langle x, \mathbf{1}\rangle-r) \cdot \prod_{i \in I} x_{i}
$$

It is clear from definition that $h_{I}\left(\chi_{A}\right)=0$ for all $A \in \mathcal{A}$. The product term serves as a "unique identifier" for this coined-up polynomial; it will come handy when showing linear independence.

Suppose $\sum_{A} \alpha_{A} \cdot f_{A}(x)+\sum_{I} \beta_{I} \cdot h_{I}(x) \equiv 0$. First assume that the α_{A} 's are non-trivial. Then we may repeat our previous argument without difficulties because the h_{I} 's disappear when substituting in characteristic vectors of $A, B \in \mathcal{A}$. This would lead to a contradiction, so we must conclude the α_{A} 's are all zero.

Hence $\sum_{I} \beta_{I} \cdot h_{I}(x) \equiv 0$. Assume that the t_{I} 's are non-trivial. Then let J be the inlusionminimal set such that $\beta_{I} \neq 0$. We evaluate the equation at $x:=\chi_{J}$ and all terms except $\beta_{J} \cdot h_{J}$ vanish. (For $I \subset J$ the coefficient is zero. For $I \nsubseteq J$, there exists $i \in I \backslash J$, and in particular $\chi_{J}(i)=0$ cancels the product term $\prod_{i \in I} x_{i}$.) Therefore we derive $\beta_{J}=0$, a contradiction.

Finally, we remark that the same bound applies to uniform L-mod- p family as well, but the proof requires Möbius inversion formula.

5 Application Highlights

Explicit construction in Ramsey theory

We will construct explicitly a graph $G=(V, E)$ on n vertices with $\alpha(G), \omega(G) \leqslant k$. This would imply that the Ramsey number $R(k+1)$ is at least $n+1$.

Our vertex set is taken to be $V:=\binom{[N]}{p^{2}-1}$ where N is a parameter we shall fix later. We join two sets $A, B \in V$ by an edge iff $|A \cap B|=p-1(\bmod p)$. Now observe:

- Every independent set of the graph is a ($p^{2}-1$)-uniform $\{0, \ldots, p-2\}$-mod- p family. So its size is at most $\binom{N}{p-1}$.
- Every clique of the graph is a $\left(p^{2}-1\right)$-uniform $\{p-1\}$-mod- p family. So the size of any pairwise intersection can only be $p-1,2 p-1, \ldots,(p-1) p-1$. Therefore it is also a $\left(p^{2}-1\right)$-uniform $\{p-1,2 p-1, \ldots,(p-1) p-1\}$ family. So its size is at most $\binom{N}{p-1}$.
Hence we constructed a graph with $n:=\binom{N}{p^{2}-1}$ and $\alpha, \omega \leqslant k:=\binom{N}{p-1}$. One may tune $N:=p^{3}$ to get optimal asymptotics.

Chromatic number of \mathbb{R}^{d}

We are asked to paint the Euclidean space \mathbb{R}^{d} using as least colour as possible. The requirement is that any pair of points $x, y \in \mathbb{R}^{d}:\|x-y\| \leqslant 1$ are assigned different colours.

A natural approach is to tile hypercubes in \mathbb{R}^{d}. With a more refined method, one may prove that 9^{d} colours suffice.

The investigation into lower bounds is much more difficult. However, using results from set systems, we can prove a surprisingly nice lower bound 1.1^{d} without much effort.
Let $d:=4 p$ and $m:=\binom{4 p}{p-1}+1$. We construct a set $S \subseteq \mathbb{R}^{d}$ that contains all ± 1-vectors with $2 p$ many +1 's and the same amount of -1 's, and additionally with first coordinate +1 . These vectors naturally correspond to sets in $\binom{[4 p]}{2 p}$ containing the first element. Clearly $|S|=\binom{4 p}{2 p} / 2$.

Eventually we will show that S is "full of conflicts". That is, any m-subset of S shall contain a unit-distant pair. Then it's impossible to paint S with only $|S| / m$ colours (otherwise there exists a colour class containing at least m points, hence getting a internal conflict). This certifies that the chromatic number of the entire space is at least

$$
\frac{|S|}{m}=\frac{\binom{4 p}{2 p}}{2\left(\binom{4 p}{p-1}+1\right)}>1.1^{d}
$$

Towards our goal, we will do something slightly different:

Lemma. Every m-subset of S contains an orthogonal pair.

Proof. Let $x, y \in S$; assume A, B are their corresponding sets. Note that $x=2 \chi_{A}-\mathbf{1}$ and similarly $y=2 \chi_{B}-\mathbf{1}$. Therefore

$$
\begin{aligned}
\langle x, y\rangle & =4\left\langle\chi_{A}, \chi_{B}\right\rangle-2\left\langle\chi_{A}, \mathbf{1}\right\rangle-2\left\langle\chi_{B}, \mathbf{1}\right\rangle+\langle\mathbf{1}, \mathbf{1}\rangle \\
& =4|A \cap B|-4 p-4 p+4 p \\
& =4|A \cap B|-4 p,
\end{aligned}
$$

and $x \perp y \Longleftrightarrow|A \cap B|=p$.
Now suppose $T \subseteq S$ does not contain orthogonal pairs, then the corresponding set system of T is a p-uniform $\{1, \ldots, p-1\}$-mod- p family. (0 is invalid because $A \cap B \neq \emptyset,|A \cap B|<2 p$ and $|A \cap B| \neq p$.) Therefore $|T| \leqslant\binom{ 4 p}{p-1}<m$.

Our goal almost follows immediately from the lemma. Note that all vectors in S have length $2 \sqrt{p}$. We rescale them to obtain length $\frac{1}{\sqrt{2}}$ each. Orthogonality is not harmed, clearly. By the lemma, every m-subset of (the rescaled) S contains an orthogonal pair x, y, and consequently $\|x-y\|=\sqrt{\|x\|^{2}+\|y\|^{2}}=1$ as desired.

Counterexample of Borsuk's conjecture

Another exciting manifestation of algebraic tools is constructing a counterexample of Borsuk's conjecture:

Any set $D \subseteq \mathbb{R}^{d}$ of diameter 1 can be decomposed into $d+1$ parts of diameters strictly less than 1 .

What we will show is quite the contrary, in a drastic sense:
There exists $S_{0} \subseteq \mathbb{R}^{d}$ of diameter 1 that satisfies the following. No matter how we decompose it into $<1.1^{\sqrt{d}}$ parts, there is always a part of diameter 1 .
In fact this counterexample is not far-reaching. It is directly related to our previous set S of ± 1 vectors. We want to reduce the detection of "diameter=1" to the detection of orthogonality. In other words, we wish the existence of orthogonal pair certifies the fact that the diameter is 1 .
For our wish to become true, we must ensure that the vectors have angles at most $\pi / 2$, which is not quite the case for S.
The solution uses a tensorisation trick, which transforms S to a set of the desired property, yet orthogonality is preserved. Define the tensor product of two vectors to be $x \otimes y:=x y^{\mathrm{T}}$. It is easy to check by linear algebra that

$$
\langle x \otimes y, u \otimes v\rangle=\operatorname{tr}\left(\left(x y^{\mathrm{T}}\right)^{\mathrm{T}} u v^{\mathrm{T}}\right)=\operatorname{tr}\left(y\left(x^{\mathrm{T}} u\right) v\right)=\langle x, u\rangle\langle y, v\rangle .
$$

(Here we identify $d \times d$ matrix with d^{2}-dimensional vector). Now we generate

$$
S_{0}:=\left\{x \otimes x \in \mathbb{R}^{d \times d}: x \in S\right\} .
$$

Then

$$
\langle x \otimes x, y \otimes y\rangle=\langle x, y\rangle^{2} \geqslant 0
$$

with equality iff $x \perp y$. This is exactly what we are seeking.

