
Dimensional Argument

Yanheng Wang

Suppose we want to study a collection A defined via certain constraints. The dimensional
argument could help us bound the size jAj, a first indicator of the behaviour of A. To
apply the argument, we injectively map A3 a 7! �a2 V where V is a linear space. Then
we exploit the constraints to show that f�aga2A are linearly independent, thus concluding
jAj= jf�aga2Aj6dim(V ).

The key to dimensional argument is designing a suitable injection �:A!V . Typically we
work backwards:

I Explore the constraints and model them algebraically;

I Design the �a's so that we could prove their linear independence by the algebraic
properties we collected earlier.

I Bound the dimension of the linear space V := spanf�a : a2Ag.

1 Town theorems

Odd-even town

Let A� 2[n] be a collection of subsets of [n]. For all distinct A;B 2A, we require that jAj
is odd while jA\B j is even. How large can m := jAj be?

� We may encode a set A � [n] as a binary vector (termed the charactersitic vector)
�A2 f0; 1gn by putting a 1 at coordinate i iff i2A. Then the constraints simply say
h�A; �Ai=1 (mod 2) and h�A; �Bi=0 (mod 2).

� If we interpret the characteristic vectors as vectors in F2
n then they are orthonormal!

From basic linear algebra we know orthonormal vectors are linear independent.

� With this in mind, we simply design �:A!F2
n;A 7!�A and conclude m6dim(F2n)=n.

Even-odd town

In fact, we may switch the parities (i.e. constraining jAj even and jA\B j odd) and derive
the same bound. One lazy proof is to append a dummy element 0 to all the sets, thus
alternating the parities back. (A small modification is necessary in the argument: the
characteristic vectors are now living in f1g�F2

n, a linear space of dimension n still.)

But it is instructive to present a direct proof. Again we map sets to characteristic vectors
in F2

n and find h�A; �Ai=0 and h�A; �Bi=1. This time, showing linear independence is
less straightforward. To do so, we place the vectors in a matrixM 2F2n�m and try to show
rank(M)=m. Note

MTM =

0BBBBBB@
0 1 � � � 1
1 0 � � � 1
��� ��� �� � ���
1 1 � � � 0

1CCCCCCA= J ¡ I:
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Recall that J has eigenvalues m;0; :: : ;0, so J ¡ I has eigenvalues m¡1;¡1;: :: ;¡1. Hence

rank(M)= rank(MTM)= rank(J ¡ I)=m:

Therefore the vectors are indeed independent, implying m6 n. (Alternatively, we could
compute the det(MTM)=/ 0 to conclude the same.)

Even-even and odd-odd towns?

What if we require both jAj and jA\B j even (or both odd)? Then our previous argument
breaks since the charactersitic vectors are deeply dependent. Actually in this scenario, m
could be as large as 2n/2 � consider partitioning [n] into n/2 pairs, say pi := f2i¡ 1; 2ig
for i2 [n/2], and letting A := f

S
i2I pi : I � [n/2]g.

Via very basic properties of orthogonal complements, one can show a tight upper bound
m6 2n/2. The proof is easy but off-topic, so we do not pursue it here.

Generalisations

We list several generalisations of town theorems and give hints on how to approach them:

� For prime p, require jAj=/ 0 (mod p) and jA\B j=0 (mod p).

� Result: m6n.

� Method: work in Fp
n.

� For q= pk where p is prime, require jAj=/ 0 (mod q) and jA\B j=0 (mod q).

� Result: m6n.

� Method: work in Qn and use some number theory to derive linear independence.
We cannot work in Fq

n because it is not Zq! More to the point, char(Fqn) = p, so a
zero sum only implies �mod p� rather than �mod q�.

� For q=
Q

i=1
r pi

ki where pi's are distinct primes, require jAj=/ 0 (mod q) and jA\B j=
0 (mod q).

� Result: m6 rn.

� Method: by induction on r; partition A depending on jAj=0(mod pr
kr) or not; then

apply induction hypothesis and the previous part.

� We may also generalise the number of intersecting sets. For example, require jAj odd
but jA\B \C j even.

� Result: m6n (n+1).

� Method: build a graph G := (A; ffA;Bg : jA\B j oddg). Using known results and
the property, show �(G)6 n. Then �(G)6 n+ 1, and �(G)> m

n+1
. But on the

other hand any independent set corresponds to odd-even town, hence �(G)6n.
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2 Fisher's inequality

Again consider a collection A=fA1;:::;Amg�2[n]. This time we require that jAi\Aj j=�
for all distinct i; j.

First we rule out an uninteresting case. If there is a set Ai of size exactly �, then all other
sets must be supersets of Ai, and their pairwise intersections give Ai. The picture looks
like a �sunflower� where Ai locates at its core and the �petals� are disjoint. So the total
number of sets, m, is at most n.

Now we may assume jAij>�+1 for all i. We copy the argument in previous section. Here
we work in Rn and arrange the characteristic vectors into matrix M 2Rm�m such that

MTM =

0BBBBBB@
jA1j � � � � �
� jA2j � � � �

��� ��� �� � ���
� � � � � jAmj

1CCCCCCA:

We calculate the determinant and find it
�
1 +

P
i=1
m �

jAij ¡�

�Q
i=1
m (jAij ¡ �) =/ 0, thus

proving m6n.
Next we present another approach which maps sets to polynomials rather than character-
istic vectors. For each A2A we associate a (linear) polynomial

pA(x) := hx; �Ai¡�:

Note that pA(�A)= jAj¡�>1 while pA(�B)=0 for all B 2AnfAg. Therefore the polyno-
mials are linearly independent. (Prove by definition of linear independence; or decompose
the polynomial to a standard basis and compute rank.) On the other hand, the dimension
of the space is at most n, since every such polynomial is a linear combination of monomials
x1; : : : ; xn. This implies m6n.

3 k-distance set

Let P �Rd be a point set in Euclidean space. We call it a k-distance set if every pair
fp; qg2

�
P
2

�
satisfies kp¡ qk22f�1; : : : ; �kg, where �1; : : : ; �k are distinct positive numbers.

How large can P be?

For the case k=1, it is quite intuitive that jP j6 d+1, with the extremal example being
the regular simplex. One argument goes as follows. Without loss of generality assume
02P and �1:=1. We consider the remaining points P 0 :=P nf0g. By equidistant property
we see kpk=1 and 1=kp¡ qk2=2¡2hp; qi for all p; q 2P 0. So we could again show that
the points are linearly independent, so jP 0j6n. (Remark: in this proof we use the trivial
mapping � := id.)

For k> 2 the previous proof does not generalise. The natural step is to try some stronger
and more flexible object, the polynomials. To this end, we design, for each p2P , a poly-
nomial

fp(x) :=
Y
i=1

k

(kx¡ pk2¡ �i)
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which nicely captures the k-distant property. Namely, fp(p) =/ 0 yet fp(q) = 0 for any
distinct p; q2P . Hence the polynomials are linearly independent. It remains to bound the
dimension of this polynomial space. As a very crude estimate, the dimension is at most
(d+1)2k because deg(fp)6 2k and there are at most that many (in fact,

�
d+1+2k

2k

�
to be

precise) monomials to choose.

But we could be more refined. We expand the definition by

fp(x)=
Y
i=1

k
 
kxk2¡ 2

X
i=1

d

pjxj+(kpk2¡ �i)
!

Observe that the polynomials are spanned by the monomials

8<:x1�1 � � � xd�d kxk2�0
������������Xj=0

d

�j6 k

9=;:
Basically, the types of monomials are quite restricted. It remains to count the number,
but this is a variant of �balls and bins� model. We introduce a slack variable to make the
�6� a �=�. Then we count the number of possibilities to distribute k balls into d+2 bins
� which can be realised by choosing d+1 positions for delimiters from d+1+ k possible
slots. So the count is

�
d+1+ k
d+1

�
=

�
d+1+ k

k

�
.

4 L Family

Suppose A� 2[n] and let p be a prime.

� We call it an L -mod-p family if jA\B j 2L (mod p) and jAj 2/ L (mod p) for all distinct
A;B 2A.

� We call it an L family if jA\B j 2L for all distinct A;B 2A.

� We call it r-uniform if every set A2A has the same cardinality jAj= r.

Given n and k := jLj, how large can an L (resp. L-mod-p) family be?

This is a general framework which models both town theorem and Fisher's inequality.
Their conditions can be rephrased as �{0}-mod-2 family� and �f�g family�, respectively.

Let's look at L-mod-p family first. It's no longer a good idea to map to characteristic
vectors because we don't have enough information for proving independence. So we try
mapping to polynomials in a way that they are easily seen independent. For each A define
polynomial fA:Zpn!Zp by

fA(x) :=
Y
l2L

(h�A; xi¡ l):

Observe that fA(�A)=/ 0 and fA(�B)=0 for all B2AnfAg. So the polynomials are linearly
independent. It remains to bound the dimension of this polynomial space.
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To this end, we note that the polynomials have degrees at most k= jLj, so they are of
course spanned by all

�
n+ k
k

�
monomials. This gives a (quite trivial) upper bound on the

dimension. But we can do better by exploiting the simple fact 1t=1 and 0t=0. Namely,
we could replace any high-order term in pA(x) by a multilinear term, for instance replacing
x1
3x4

2x5 with x1x4x5. This operation will change the polynomial, but it preserves the values
on characteristic vectors! Hence the resulting polynomials are still linearly independent;
furthermore they are spanned by all multilinear polynomials on n variables of degree at
most k. Now we derive a bound

P
i=0
k �

n
i

�
, tighter than our previous

�
n+ k
k

�
especially when

k is large.

Now we move on to L family. The idea is the same but with some twist because it is now
possible that jAj2L. Still, we may enforce linear independence by �upper triangular form�
instead of the �diagonal form�. To be specific, define fA:Rn!R by

fA(x) :=
Y
l2L
l<jAj

(h�A; xi¡ l):

Still fA(�A) =/ 0. Besides, fA(�B) = 0 whenever jA\B j< jAj, or equivalently A *B. We
claim that the polynomials are linearly independent. Suppose for the sake of contradiction
that

P
A2A�A � fA(x)�0 for some non-trivial coefficients. Then let B2A be the inclusion-

minimal set with �A=/ 0. We evaluate the equation at x := �A and find everything except
�A � fA go away (since all A�B have zero coefficient, and all A *B have zero fA value).
So we must conclude �A=0, a contradiction.

By the same line of argument as in previous proof, we derive an upper bound
P

i=0
k �

n
i

�
.

Next, we examine r-uniform L family and see how the uniformity condition sharpens
our bound. The key ingredient is to �squeeze in� more polynomials besides fA(x) yet
maintaining linear independence and the dimension. We define, for each I � [n]: jI j6k¡1,
a polynomial hI:Rn!R by

hI(x) := (hx;1i¡ r) �
Y
i2I

xi:

It is clear from definition that hI(�A) = 0 for all A 2A. The product term serves as a
�unique identifier� for this coined-up polynomial; it will come handy when showing linear
independence.

Suppose
P

A�A � fA(x)+
P

I�I �hI(x)�0. First assume that the �A's are non-trivial. Then
we may repeat our previous argument without difficulties because the hI's disappear when
substituting in characteristic vectors of A;B 2A. This would lead to a contradiction, so
we must conclude the �A's are all zero.

Hence
P

I �I �hI(x)� 0. Assume that the tI's are non-trivial. Then let J be the inlusion-
minimal set such that �I =/ 0. We evaluate the equation at x := �J and all terms except
�J � hJ vanish. (For I � J the coefficient is zero. For I * J , there exists i 2 I nJ , and in
particular �J(i) = 0 cancels the product term

Q
i2I xi.) Therefore we derive �J = 0, a

contradiction.

Finally, we remark that the same bound applies to uniform L-mod-p family as well, but
the proof requires Möbius inversion formula.
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5 Application Highlights

Explicit construction in Ramsey theory

We will construct explicitly a graph G= (V ; E) on n vertices with �(G); !(G)6 k. This
would imply that the Ramsey number R(k+1) is at least n+1.

Our vertex set is taken to be V :=
�

[N ]

p2¡ 1

�
where N is a parameter we shall fix later. We

join two sets A;B 2V by an edge iff jA\B j= p¡ 1 (mod p). Now observe:

� Every independent set of the graph is a (p2¡ 1)-uniform f0; : : : ; p¡ 2g-mod-p family.
So its size is at most

�
N

p¡ 1

�
.

� Every clique of the graph is a (p2¡1)-uniform fp¡1g-mod-p family. So the size of any
pairwise intersection can only be p¡ 1; 2p¡ 1; : : : ; (p¡ 1)p¡ 1. Therefore it is also a
(p2¡ 1)-uniform fp¡ 1; 2p¡ 1; : : : ; (p¡ 1)p¡ 1g family. So its size is at most

�
N

p¡ 1

�
.

Hence we constructed a graph with n :=
�

N

p2¡ 1

�
and �; ! 6 k :=

�
N

p¡ 1

�
. One may tune

N := p3 to get optimal asymptotics.

Chromatic number of Rd

We are asked to paint the Euclidean space Rd using as least colour as possible. The
requirement is that any pair of points x; y2Rd :kx¡ yk61 are assigned different colours.

A natural approach is to tile hypercubes in Rd. With a more refined method, one may
prove that 9d colours suffice.

The investigation into lower bounds is much more difficult. However, using results from
set systems, we can prove a surprisingly nice lower bound 1.1d without much effort.

Let d := 4p and m :=
�
4p
p¡ 1

�
+ 1. We construct a set S �Rd that contains all �1-vectors

with 2p many +1's and the same amount of ¡1's, and additionally with first coordinate
+1. These vectors naturally correspond to sets in

�
[4p]
2p

�
containing the first element. Clearly

jS j=
�
4p
2p

�
/2.

Eventually we will show that S is �full of conflicts�. That is, anym-subset of S shall contain
a unit-distant pair. Then it's impossible to paint S with only jS j/m colours (otherwise
there exists a colour class containing at least m points, hence getting a internal conflict).
This certifies that the chromatic number of the entire space is at least

jS j
m

=

�
4p
2p

�
2
��

4p
p¡ 1

�
+1
�> 1.1d:

Towards our goal, we will do something slightly different:

Lemma. Every m-subset of S contains an orthogonal pair.
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Proof. Let x; y 2S; assume A;B are their corresponding sets. Note that x=2�A¡1 and
similarly y=2�B¡1: Therefore

hx; yi = 4h�A; �Bi¡ 2h�A;1i¡ 2h�B;1i+ h1;1i
= 4jA\B j¡ 4p¡ 4p+4p
= 4jA\B j¡ 4p;

and x? y()jA\B j= p.

Now suppose T �S does not contain orthogonal pairs, then the corresponding set system of
T is a p-uniform f1; : : : ; p¡1g-mod-p family. (0 is invalid because A\B=/ ;, jA\B j<2p
and jA\B j=/ p.) Therefore jT j6

�
4p
p¡ 1

�
<m. �

Our goal almost follows immediately from the lemma. Note that all vectors in S have length
2 p
p

. We rescale them to obtain length 1

2
p each. Orthogonality is not harmed, clearly.

By the lemma, every m-subset of (the rescaled) S contains an orthogonal pair x; y, and

consequently kx¡ yk= kxk2+ kyk2
q

=1 as desired.

Counterexample of Borsuk's conjecture

Another exciting manifestation of algebraic tools is constructing a counterexample of
Borsuk's conjecture:

Any setD�Rd of diameter 1 can be decomposed into d+1 parts of diameters
strictly less than 1.

What we will show is quite the contrary, in a drastic sense:

There exists S0�Rd of diameter 1 that satisfies the following. No matter
how we decompose it into <1.1 d

p
parts, there is always a part of diameter 1.

In fact this counterexample is not far-reaching. It is directly related to our previous set
S of �1 vectors. We want to reduce the detection of �diameter=1� to the detection of
orthogonality. In other words, we wish the existence of orthogonal pair certifies the fact
that the diameter is 1.

For our wish to become true, we must ensure that the vectors have angles at most �/2,
which is not quite the case for S.

The solution uses a tensorisation trick, which transforms S to a set of the desired property,
yet orthogonality is preserved. Define the tensor product of two vectors to be x
 y :=xyT.
It is easy to check by linear algebra that

hx
 y; u
 vi= tr((xyT)Tu vT)= tr(y(xTu)v)= hx; uihy; vi:

(Here we identify d� d matrix with d2 -dimensional vector). Now we generate

S0 := fx
x2Rd�d :x2Sg:

Then

hx
x; y
 yi= hx; yi2> 0

with equality iff x? y. This is exactly what we are seeking.
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